Skip to main content
Log in

Production of reactive oxygen species in decoupled, Ca2+-depleted PSII and their use in assigning a function to chloride on both sides of PSII

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Extraction of Ca2+ from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as “the decoupling effect” (Semin et al. Photosynth Res 98:235–249, 2008). Extraction of Cl from Ca2+-depleted membranes (PSII[–Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O ·−2 , as possible products of water oxidation in PSII(–Ca) membranes was examined. During the investigation of O ·−2 production in PSII(–Ca) samples, we found that (i) O ·−2 is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl does not inhibit water oxidation, but (iii) Cl depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O ·−2 generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl anions are not involved in the oxidation of water to H2O2 in decoupled PSII(–Ca) membranes. These results also indicate that Cl anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H+ ions into the lumenal space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

Abbreviations

Buffer A(–Cl):

Buffer A without Cl

Chl:

Chlorophyll

DCPIP:

2,6-Dichlorophenol indophenol

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

Decoupled PSII(–Ca):

Ca2+-depleted PSII that are inhibited in O2 evolution without significant inhibition of the light-dependent reduction of an exogenous electron acceptor

DMAB:

3-(Dimethylamino) benzoic acid

DMBQ:

2,6-Dimethyl-p-benzoquinone

DPC:

1,5-Diphenycarbazide

HA site:

High-affinity Mn-binding site

LA site:

Low-affinity electron donation site

MBTH:

3-Methyl-2-benzothiazolinone hydrazone hydrochloride hydrate

OEC:

Oxygen-evolving complex

POBN:

4-Pyridyl-1-oxide-N-tert-butylnitrone

PSII:

Photosystem II

PSII(–Ca):

Ca2+-depleted PSII

PSII(–Ca, –Cl):

Ca2+- and Cl-depleted PSII

PSII(–Mn):

Mn-depleted PSII

PSII(–PsbO):

PsbO-depleted PSII

RC:

Reaction center

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

YZ :

Redox-active tyrosine (D1-Tyr161), the first electron donor to P680 + in PSII

References

  • Ananyev GM, Wydrzynski T, Renger G, Klimov V (1992) Transient peroxide formation by the manganese-containing, redox-active donor side of photosystem II upon inhibition of O2 evolution with lauroylchloline chloride. Biochim Biophys Acta 1100:303–311

    Article  Google Scholar 

  • Ananyev GM, Renger G, Wacker U, Klimov V (1994) The photoproduction of superoxide radicals and the superoxide dismutase activity of photosystem II. The possible involvement of cytochrome b-559. Photosynth Res 41:327–338

    Article  CAS  Google Scholar 

  • Andréasson LE, Vass I, Styring S (1995) Ca2+ depletion modifies the electron transfer on both donor and acceptor sides in photosystem II from spinach. Biochim Biophys Acta 1230:155–164

    Article  Google Scholar 

  • Arato A, Bondarava N, Krieger-Liszkay A (2004) Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. Biochim Biophys Acta 1608:171–180

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JM (1964) The molar extinction coefficient of 2,6-dichlorophenolindophenol. Biochim Biophys Acta 86:194–197

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249:2175–2181

    PubMed  CAS  Google Scholar 

  • Blubaugh DJ, Cheniae GM (1990) Kinetics of photoinhibition in hydroxylamine-extracted photosystem II membranes: relevance to photoactivation and sites of electron donation. Biochemistry 29:5109–5118

    Article  PubMed  CAS  Google Scholar 

  • Bock A, Krieger-Liszkay A, de Zarate IBO, Schönknecht G (2001) Cl channel inhibitors of the arylaminobenzoate type act as photosystem II herbicides: a functional and structural study. Biochemistry 40:3273–3281

    Article  PubMed  CAS  Google Scholar 

  • Boussac A, Picaud M, Etienne A-L (1986) Effect of potassium iridic chloride on the electron donation by Mn2+ to photosystem II particles. Photochem Photobiophys 10:201–211

    CAS  Google Scholar 

  • Boussac A, Zimmermann J-L, Rutherford AW (1990) Factors influencing the formation of modified S2 EPR signal and the S3 EPR signal in Ca(2+)-depleted photosystem II. FEBS Lett 277:69–74

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE, Grace SC (1999) Voltammetric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    Article  PubMed  CAS  Google Scholar 

  • Fine PL, Frash WD (1992) The oxygen-evolving complex requires chloride to prevent hydrogen peroxide formation. Biochemistry 31:12204–12210

    Article  PubMed  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT (1983) Hydroxylamine as an inhibitor between Z and P680 in photosystem II. FEBS Lett 153:231–234

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT, Yocum CF (1984) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations. FEBS Lett 167:127–130

    Article  CAS  Google Scholar 

  • Hillier W, Wydrzynski T (1993) Increases in peroxide formation by the photosystem II oxygen evolving reactions upon removal of the extrinsic 16, 22 and 33 kDa proteins are reversed by CaCl2 addition. Photosynth Res 38:417–423

    Article  CAS  Google Scholar 

  • Hoganson CW, Ghanotakis DF, Babcock GT, Yocum CF (1989) Mn2+ reduces Y +Z in manganese-depleted photosystem II preparations. Photosynth Res 22:285–293

    Article  CAS  Google Scholar 

  • Inoue H, Wada T (1987) Requirement of manganese for electron donation of hydrogen peroxide in photosystem II reaction center complex. Plant Cell Physiol 28:767–773

    CAS  Google Scholar 

  • Kawakami K, Umena Y, Kamiya N, Shen J-R (2009) Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proc Natl Acad Sci USA 106:8567–8572

    Article  PubMed  CAS  Google Scholar 

  • Khorobrych SA, Ivanov BN (2002) Oxygen reduction in a plastoquinone pool of isolated pea thylakoids. Photosynth Res 71:209–219

    Article  Google Scholar 

  • Kolbeck RC, She ZW, Callahan LA, Nosek TM (1997) Increased superoxide production during fatigue in the perfused rat diaphragm. Am J Respir Crit Care Med 156:140–145

    Article  PubMed  CAS  Google Scholar 

  • Krieger A, Rutherford AW, Johnson GN (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in photosystem II. Biochim Biophys Acta 1229:193–201

    Article  Google Scholar 

  • Krishtalik LI (1986) Energetics of multielectron reactions. Photosynthetic oxygen evolution. Biochim Biophys Acta 849:162–171

    Article  CAS  Google Scholar 

  • Kruck J, Jemiola-Rzemi’nska M, Strzalka K (2003) Cytochrome c is reduced mainly by plastoquinol and not by superoxide in thylakoid membranes at low and medium light intensities: its specific interaction with thylakoid membrane lipids. Biochem J 375:215–220

    Article  Google Scholar 

  • Kurashov VN, Lovyagina ER, Shkolnikov DY, Solntsev MK, Mamedov MD, Semin BK (2009) Investigation of the low-affinity oxidation site for exogenous electron donors in the Mn-depleted photosystem II complexes. Biochim Biophys Acta 1787:1492–1498

    Article  PubMed  CAS  Google Scholar 

  • Mano J, Takahashi M, Asada K (1987) Oxygen evolution from hydrogen peroxide in photosystem II: flash-induced catalytic activity of water-oxidizing photosystem II membranes. Biochemistry 26:2495–2501

    Article  CAS  Google Scholar 

  • Moser CC, Anderson JLR, Dutton PL (2010) Guidelines for tunneling in enzymes. Biochim Biophys Acta 1797:1573–1586

    Article  PubMed  CAS  Google Scholar 

  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105:389–397

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Inoue Y (1990) Abnormal redox reactions in photosynthetic O2-evolving centers in NaCl/EDTA-washed PS II. A dark-stable EPR multiline signal and an unknown positive charge accumulator. Biochim Biophys Acta 1020:269–277

    Article  CAS  Google Scholar 

  • Ono T, Mino H (1999) Unique binding site for Mn2+ ion responsible for reducing an oxidized YZ tyrosine in manganese-depleted photosystem II membranes. Biochemistry 38:8778–8785

    Article  PubMed  CAS  Google Scholar 

  • Popelková H, Yocum CF (2007) Current status of the role of Cl ion in the oxygen-evolving complex. Photosynth Res 93:111–121

    Article  PubMed  Google Scholar 

  • Porra RJ, Tompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-A and chlorophyll-B extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Pospišil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218–231

    Article  PubMed  Google Scholar 

  • Pospišil P, Haumann H, Dittmer J, Sole VA, Dau H (2003) Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn2(μ-O)2 complex in response to a temperature jump: a time-resolved structural investigation employing X-ray absorption spectroscopy. Biophys J 84:1370–1386

    Article  PubMed  Google Scholar 

  • Pospišil P, Arato A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43:6783–6792

    Article  PubMed  Google Scholar 

  • Rabinovich RA, Khavin ZYa (1963) Brief chemical reference book. Moscow, “Chemistry”

  • Rashid A, Carpentier R (1990) The 16 and 23 kDa extrinsic polypeptides and the associated Ca2+ and Cl modify atrazine interaction with the photosystem II core complex. Photosynth Res 24:221–227

    Article  CAS  Google Scholar 

  • Rivalta I, Amin M, Luber S, Vassiliev S, Pokhrel R, Umena Y, Kawakami K, Shen J-R, Kamiya N, Bruce D, Brudwig GW, Gunner MR, Batista VS (2011) Structural–functional role of chloride in photosystem II. Biochemistry 50:6312–6315

    Article  PubMed  CAS  Google Scholar 

  • Roose JL, Frankel LK, Bricker TM (2010) Documentation of significant electron transport defects on the reducing side of photosystem II upon removal of the PsbP and PsbQ extrinsic proteins. Biochemistry 49:36–41

    Article  PubMed  CAS  Google Scholar 

  • Seibert M, DeWit M, Staehelin LA (1987) Structural localization of the O2-evolving apparatus to multimeric (tetrameric) particles on the lumenal surface of freeze-etched photosynthetic membranes. J Cell Biology 105:2257–2265

    Article  CAS  Google Scholar 

  • Semin BK, Seibert M (2009) A simple colorimetric determination of the manganese content in photosynthetic membranes. Photosynth Res 100:45–48

    Article  PubMed  CAS  Google Scholar 

  • Semin BK, Ghirardi ML, Seibert M (2002) Blocking of electron donation by Mn(II) to YZ following incubation of Mn-depleted photosystem II membranes with Fe(II) in the light. Biochemistry 41:5854–5864

    Article  PubMed  CAS  Google Scholar 

  • Semin BK, Davletshina LN, Aleksandrov AYu, Lanchinskaya VY, Novakova AA, Ivanov II (2004) pH dependence of the efficiency of binding of iron cations to the donor side of photosystem II. Biochemistry (Moscow) 69:331–339

    Article  CAS  Google Scholar 

  • Semin BK, Davletshina LN, Ivanov II, Rubin AB, Seibert M (2008) Uncoupling of processes of molecular synthesis and electron transport in the Ca2+-depleted PSII membranes. Photosynth Res 98:235–249

    Article  PubMed  CAS  Google Scholar 

  • Semin BK, Davletshina LN, Ivanov II, Seibert M, Rubin AB (2012) Rapid degradation of the tetrameric Mn cluster in illuminated, PsbO-depleted photosystem II preparations. Biochemistry (Moscow) 77:152–156

    Article  CAS  Google Scholar 

  • Serrat FB (1994) Colorimetric method for determination of chlorine with 3,3′,5,5′-tetramethylbenzidine. Talanta 41:2091–2094

    Article  PubMed  CAS  Google Scholar 

  • Sheptovitsky YG, Brudvig GW (1996) Isolation and characterization of spinach photosystem II membranes-associated catalase and polyphenoloxidase. Biochemistry 35:16255–16263

    Article  PubMed  CAS  Google Scholar 

  • Sivaraja M, Tso J, Dismukes GC (1989) A calcium-specific site influence the structure and activity of the manganese cluster responsible for photosynthetic water oxidation. Biochemistry 28:9459–9464

    Article  PubMed  CAS  Google Scholar 

  • Stemler A, Govindjee (1974) Bicarbonate stimulation of oxygen evolution, ferricyanide reduction and photoinactivation using isolated chloroplasts. Plant Cell Physiol 15:533–544

    CAS  Google Scholar 

  • Thompson LK, Miller AF, Buser CA, de Paula JC, Brudvig GW (1989) Characterization of the multiple forms of cytochrome b559 in photosystem II. Biochemistry 28:8048–8056

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski TJ, Huggins BJ, Jursinic PA (1985) Uncoupling of detectable O2 evolution from the apparent S-state transitions in photosystem II by lauroylcholine chloride: possible implications in the photosynthetic water-splitting mechanism. Biochim Biophys Acta 809:125–136

    Article  CAS  Google Scholar 

  • Yadav DK, Pospíšil P (2012) Role of chloride ion in hydroxyl radical production in photosystem II under heat stress: electron paramagnetic resonance spin-trapping study. J Bioenergy Biomembr 44:365–372

    Article  CAS  Google Scholar 

  • Yamashita A, Nijo N, Pospíšil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y (2008) Quality control of photosystem II. Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 283:28380–28391

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Weng J, Pan J, Tu T, Yao S, Xu C (2003) Study on the photo-generation of superoxide radicals in Photosystem II with EPR spin trapping techniques. Photosynth Res 75:41–48

    Article  PubMed  CAS  Google Scholar 

  • Zuo L, Christofi FL, Wright VP, Bao S, Clanton TL (2004) Lipoxygenase-dependent superoxide release in skeletal muscle. J Appl Physiol 97:661–668

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work at the National Renewable Energy Laboratory was carried out under US Department of Energy contract number DE-AC36-08-GO28308. This study was also supported in part by the Russian Foundation for Basic Research, Project Numbers 08-04-00354 (AR), by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (MS), and by the NREL pension program (MS). The authors would like to thank Drs. Gary Brudvig and Ken Sauer for their valuable comments and recommendations during the inception of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris K. Semin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semin, B.K., Davletshina, L.N., Timofeev, K.N. et al. Production of reactive oxygen species in decoupled, Ca2+-depleted PSII and their use in assigning a function to chloride on both sides of PSII. Photosynth Res 117, 385–399 (2013). https://doi.org/10.1007/s11120-013-9870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9870-x

Keywords

Navigation