Skip to main content
Log in

Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The bioenergetic processes of photosynthesis and respiration are mutually beneficial. Their interaction extends to photorespiration, which is linked to optimize photosynthesis. The interplay of these three pathways is facilitated by two major phenomena: sharing of energy/metabolite resources and maintenance of optimal levels of reactive oxygen species (ROS). The resource sharing among different compartments of plant cells is based on the production/utilization of reducing equivalents (NADPH, NADH) and ATP as well as on the metabolite exchange. The responsibility of generating the cellular requirements of ATP and NAD(P)H is mostly by the chloroplasts and mitochondria. In turn, besides the chloroplasts, the mitochondria, cytosol and peroxisomes are common sinks for reduced equivalents. Transporters located in membranes ensure the coordinated movement of metabolites across the cellular compartments. The present review emphasizes the beneficial interactions among photosynthesis, dark respiration and photorespiration, in relation to metabolism of C, N and S. Since the bioenergetic reactions tend to generate ROS, the cells modulate chloroplast and mitochondrial reactions, so as to ensure that the ROS levels do not rise to toxic levels. The patterns of minimization of ROS production and scavenging of excess ROS in intracellular compartments are highlighted. Some of the emerging developments are pointed out, such as model plants, orientation/movement of organelles and metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-OG:

2-Oxoglutarate

3-PGA:

3-Phosphoglycerate

AOX:

Alternative oxidase

APX:

Ascorbate peroxidase

ASC:

Ascorbate

AT:

Adenylate transporter

BPGA:

Bisphosphoglycerate

CAT:

Catalase

CET:

Cyclic electron transport

DHAP:

Dihydroxyacetone phosphate

DiT1/2:

Plastidic 2-oxoglutarate-malate transporter/plastidic glutamate-malate transporter

DTC:

Dicarboxylate/tricarboxylate carrier

Fd:

Ferredoxin

FNR:

Fd-NADP+ reductase

GABA:

γ-Aminobutyric acid

GAP:

Glyceraldehyde 3-phosphate

GDC:

Glycine decarboxylase

GO:

Glycolate oxidase

GOGAT:

Glutamine:oxoglutarate aminotransferase

GPx:

Glutathione peroxidase

GS:

Glutamine synthetase

GSH:

Glutathione

MET:

Mitochondrial electron transport

NiR:

Nitrite reductase

NiTr:

Nitrate transporter

NR:

Nitrate reductase

OAA:

Oxaloacetate

PC:

Plastocyanin

PEP:

Phosphoenolpyruvate

PLGG1:

Plastidic glycolate glycerate transporter

PQ:

Plastoquinone

PrxR:

Peroxiredoxins

PyrT:

Pyruvate transporter

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TPT:

Triose phosphate/phosphate translocator

XO:

Xanthine oxidase

References

  • Arnold A, Nikoloski Z (2011) A quantitative comparison of Calvin-Benson cycle models. Trends Plant Sci 16:676–683

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  PubMed  CAS  Google Scholar 

  • Bauwe H, Hagemann M, Kern R, Timm S (2012) Photorespiration has a dual origin and manifold links to central metabolism. Curr Opin Plant Biol 15:269–275

    Article  PubMed  CAS  Google Scholar 

  • Berry JO, Yerramsetty P, Zielinski AM, Mure CM (2013) Photosynthetic gene expression in higher plants. Photosynth Res. doi:10.1007/s11120-013-9880-8

    PubMed  Google Scholar 

  • Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, Caicedo AL, Gao C, Gu Y, Hazen SP, Holt BF III, Hong SY, Jordan M, Manzaneda AJ, Mitchell-Olds T, Mochida K, Mur LAJ, Park CM, Sedbrook J, Michelle Watt M, Zheng SJ, Vogel JP (2012) Brachypodium as a model for the grasses: today and the future. Plant Physiol 157:3–13

    Article  Google Scholar 

  • Brown NJ, Parsley K, Hibberd JM (2005) The future of C4 research—maize, Flaveria or Cleome? Trends Plant Sci 10:215–221

    Article  PubMed  CAS  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Eck JV (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544

    Article  PubMed  CAS  Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Clark SM, Leo RD, Dhanoa PK, Cauwenberghe ORV, Mullen RT, Shelp BJ (2009) Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot 60:1743–1757

    Article  PubMed  CAS  Google Scholar 

  • Dinakar CH, Abhaypratap V, Yearla SR, Raghavendra AS, Padmasree K (2010) Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta 231:461–474

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul C, Lelarge C, Prioul JL, De Paepe R, Foyer CH, Noctor G (2005) Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol 134:64–78

    Article  Google Scholar 

  • Eisenhut M, Pick TR, Bordych C, Weber AP (2012) Towards closing the remaining gaps in photorespiration - the essential but unexplored role of transport proteins. Plant Biol. doi:10.1111/j.1438-8677.2012.00690

    Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  PubMed  CAS  Google Scholar 

  • Givan CV (1999) Evolving concepts in plant glycolysis: two centuries of progress. Biol Rev 74:277–309

    Article  Google Scholar 

  • Hanning I, Heldt HW (1993) On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea) leaves partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol 103:1147–1154

    PubMed  CAS  Google Scholar 

  • Harbinson J (2012) Modeling the protection of photosynthesis. Proc Natl Acad Sci USA 109:15533–15534

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  PubMed  CAS  Google Scholar 

  • Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot 63:1445–1459

    Article  PubMed  CAS  Google Scholar 

  • Hsieh MH, Chang CY, Hsu SJ, Chen JJ (2008) Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673

    Article  PubMed  CAS  Google Scholar 

  • Islam MS, Niwa Y, Takagi S (2009) Light-dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 50:1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk IM, Ostaszewska M (2011) Respiratory activity, energy and redox status in sulphur-deficient bean plants. Environ Exp Bot 74:245–254

    Article  CAS  Google Scholar 

  • Kant S, Seneweera S, Rodin J, Materne M, Burch D, Rothstein SJ, Spangenberg G (2012) Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. Front Plant Sci 3:162. doi:10.3389/fpls.2012.00162

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber AP, Taniguchi M (2011) The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. Plant J 65:15–26

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kong SG, Wada M (2011) New insights into dynamic actin-based chloroplast photorelocation movement. Mol Plant 4:771–781

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2012) Retrograde signaling in plants: from simple to complex scenarios. Front Plant Sci. doi:10.3389/fpls.2012.00135

    Google Scholar 

  • Linka N, Esser C (2012) Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. Front Plant Sci 3:3. doi:10.3389/fpls.2012.00003

    Article  PubMed  Google Scholar 

  • Linka N, Weber AP (2010) Intracellular metabolite transporters in plants. Mol Plant 3:21–53

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    Article  PubMed  CAS  Google Scholar 

  • Mano S, Nakamori C, Hayashi M, Kato A, Kondo M, Nishimura M (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341

    Article  PubMed  CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Whelan J, Soole KL, Day DA (2011) Organization and regulation of mitochondrial respiration in plants. Annu Rev Plant Biol 62:79–104

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  PubMed  CAS  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A (2010) Production and diffusion of chloroplastic H2O2 and its implication to signaling. J Exp Bot 61:3577–3587

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521–525

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  PubMed  CAS  Google Scholar 

  • Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci USA 109:2678–2683

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Sweetlove LJ, Fernie AR (2007) Operation and function of the tricarboxylic acid cycle in the illuminated leaf. Physiol Plant 129:45–56

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Sulpice R, Gibon Y, Fernie AR (2008) The enigmatic contribution of mitochondrial function in photosynthesis. J Exp Bot 59:1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Araújo WL, Fernie AR (2011) Targeting mitochondrial metabolism and machinery as a means to enhance photosynthesis. Plant Physiol 155:101–107

    Article  PubMed  CAS  Google Scholar 

  • Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, van Dongen JT, Faix B, Schmalzlin E, Fernie AR, Geigenberger P (2008) Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. Plant Physiol 148:1640–1654

    Article  PubMed  CAS  Google Scholar 

  • Palmieri SF, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, Trauth AU, Fiermonte G, Tjaden J, Agrimi G, Kirchberger S, Paradies E, Fernie AR, Neuhaus HE (2009) Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem 284:31249–31259

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    Article  PubMed  CAS  Google Scholar 

  • Pick TR, Bräutigam A, Schulz MA, Obata T, Fernie AR, Weber APM (2013) PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. Proc Natl Acad Sci USA 110:3185–3190

    Article  PubMed  CAS  Google Scholar 

  • Queval G, Foyer CH (2012) Redox regulation of photosynthetic gene expression. Philos Trans R Soc Lond B 367:3475–3485

    Article  CAS  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553

    Article  PubMed  CAS  Google Scholar 

  • Riazunnisa K, Padmavathi L, Bauwe H, Raghavendra AS (2006) Markedly low requirement of added CO2 for photosynthesis by mesophyll protoplasts of pea (Pisum sativum): possible roles of photorespiratory CO2 and carbonic anhydrase. Physiol Plant 128:763–772

    Article  CAS  Google Scholar 

  • Riazunnisa K, Padmavathi L, Schiebe R, Raghavendra AS (2007) Preparation of Arabidopsis mesophyll protoplasts with high rates of photosynthesis. Physiol Plant 129:679–686

    Article  CAS  Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Schwarzlander M, Finkemeier I (2012) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal. doi:10.1089/ars.2012.5104

    Google Scholar 

  • Selmar D, Kleinwächter M (2013) Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 54:817–826

    Article  PubMed  CAS  Google Scholar 

  • Shelp BJ, Mullen RT, Waller JC (2012) Compartmentation of GABA metabolism raises intriguing questions. Trends Plant Sci 17:57–59

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (2012) Progress in understanding and engineering primary plant metabolism. Curr Opin Biotechnol 24:229–238

    Article  PubMed  Google Scholar 

  • Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism: more than the icing on the cake. Plant J 61:1067–1091

    Article  PubMed  CAS  Google Scholar 

  • Strodtkötter I, Padmasree K, Dinakar C, Speth B, Niazi PS, Wojtera J, Voss I, Do PT, Nunes-Nesi A, Fernie AR, Linke V, Raghavendra AS, Scheibe R (2009) Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A. Mol Plant 2:284–297

    Article  PubMed  Google Scholar 

  • Sunil B, Riazunnisa K, Krishna TS, Schansker G, Strasser RJ, Raghavendra AS, Mohanty P (2008) Application of fast chlorophyll a fluorescence transient (OJIP) analysis to monitor functional integrity of pea (Pisum sativum) mesophyll protoplasts during isolation. Ind J Biochem Biophys 45:37–43

    CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG (2010) Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci 15:462–470

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Szal B, Podgorska A (2012) The role of mitochondria in leaf nitrogen metabolism. Plant Cell Environ 35:1756–1768

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Szarka A, Bánhegyi G, Asard H (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal. doi:10.1089/ars.2012.5059

    PubMed  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  PubMed  CAS  Google Scholar 

  • Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 15:252–260

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book. doi:10.1199/tab.0140

    PubMed  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722

    Google Scholar 

  • Weber APM, Bräutigam A (2013) The role of membrane transport in metabolic engineering of plant primary metabolism. Curr Opin Biotechnol 24:256–262

    Article  PubMed  CAS  Google Scholar 

  • Weber AP, Linka N (2011) Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. Annu Rev Plant Biol 62:53–77

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Droux M (2005) Synthesis of the sulfur amino acids: cysteine and methionine. Photosynth Res 86:345–362

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Terashima I, Noguchi K (2011) How and why does mitochondrial respiratory chain respond to light? Plant Signal Behav 6:864–866

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study is supported by a J.C. Bose National Fellowship (No. SR/S2/JCB-06/2006) to A.S.R, from the Department of Science and Technology, India; Council of Scientific and Industrial Research (New Delhi)—Research Associateship to B. S. and University Grants Commission-Junior Research Fellowship to V. A. We also thank DBT-CREBB, DST-FIST and UGC-SAP-CAS, for support to Department/School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agepati S. Raghavendra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunil, B., Talla, S.K., Aswani, V. et al. Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases. Photosynth Res 117, 61–71 (2013). https://doi.org/10.1007/s11120-013-9889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9889-z

Keywords

Navigation