Skip to main content
Log in

A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The remote sensing of a plant’s physiological state is a key problem of precision agriculture. The photochemical reflectance index (PRI), which is based on the intensities of the reflected light at 531 and 570 nm, is an important tool for the remote sensing of photosynthetic processes in plants. In particular, the PRI can be strongly connected with the non-photochemical quenching of chlorophyll fluorescence (NPQ) and the quantum yield of photosystem II (ФPSII); however, this connection is dependent on illumination, the intensity of stressor actions, the time scale of measurements, etc. The aim of the present work was to analyze the connection of PRI with the energy-dependent component of NPQ (NPQF) and ФPSII under heating and soil drought conditions. Pea, wheat, and pumpkin seedlings, which were grown under controlled conditions, were investigated. A PAM fluorometer Dual-PAM-100 and spectrometer S-100 were used for measurements of photosynthetic parameters and PRI, respectively. It was shown that heat stress increased the NPQF and the magnitude of light-induced changes in PRI (ΔPRI) and decreased ФPSII in pea seedlings. The decreased ФPSII and increased ΔPRI were observed in wheat after heating, but significant changes in NPQF were absent; the significant decrease in ФPSII was observed in pumpkin seedlings, while there were no significant changes in the other parameters. ΔPRI and NPQF after heating were significantly correlated. However, a significant correlation of the absolute values of PRI with photosynthetic parameters was absent. The soil drought increased NPQF and the magnitude of ΔPRI and decreased ФPSII in peas. ΔPRI was strongly correlated with photosynthetic parameters, but this correlation was absent for the absolute value of PRI. Thus, ΔPRI is strongly connected with the magnitude of NPQF and can be used as an estimator of this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Barnes EM, Clarke TR, Richards SE, Colaizzi PD, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano RJ, Li H, Moran MS (2000) Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Robert PC, Rust RH, Larson WE (eds). Proc. 5th Int. Conf. Precis Agric

  • Bilger W, Björkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta 193:238–246

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91:542–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93

    Article  CAS  Google Scholar 

  • Deamer DW, Crofts AR, Packer L (1967) Mechanisms of light-induced structural changes in chloroplasts I. Light-scattering increments and ultrastructural changes mediated by proton transport. Biochim Biophys Acta 131:81–96

    Article  CAS  Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 5:349–379

    Article  Google Scholar 

  • Ducruet J-M (1999) Relation between the heat-induced increase of F0 fluorescence and a shift in the electronic equilibrium at the acceptor side of photosystem 2. Photosynthetica 37:335–338

    Article  CAS  Google Scholar 

  • Elsheery NI, Cao KF (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777

    Article  CAS  Google Scholar 

  • Evain S, Flexas J, Moya I (2004) A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sens Environ 91:175–185

    Article  Google Scholar 

  • Filella I, Porcar-Castell A, Munné-Bosch S, Bäck J, Garbulsky MF, Peñuelas J (2009) PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int J Remote Sens 30:4443–4455

    Article  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44

    Article  Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

    Article  CAS  PubMed  Google Scholar 

  • Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 158:257–266

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Gamon J, Inoue Y, Filella I (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis. Remote Sens Environ 115:281–297

    Article  Google Scholar 

  • Heber U (1969) Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim Biophys Acta 180:302–319

    Article  CAS  PubMed  Google Scholar 

  • Hmimina G, Dufrêne E, Soudani K (2014) Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: towards a rapid and efficient correction method using real-time measurements. Plant Cell Environ 37:473–487

    Article  CAS  PubMed  Google Scholar 

  • Hüve K, Bichele I, Kaldmäe H, Rasulov B, Valladares F, Niinemets Ü (2019) Responses of aspen leaves to heatflecks: both damaging and non-damaging rapid temperature excursions reduce photosynthesis. Plants 8:E145

    Article  PubMed  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohzuma K, Hikosaka K (2018) Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochem Biophys Res Commun 498:52–57

    Article  CAS  PubMed  Google Scholar 

  • Kováč D, Veselovská P, Klem K, Večeřová K, Ač A, Peñuelas J, Urban O (2018) Potential of photochemical reflectance index for indicating photochemistry and light use efficiency in leaves of European beech and Norway spruce trees. Remote Sens 10:1202

    Article  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Magney TS, Vierling LA, Eitel JUH, Huggins DR, Garrity SR (2016) Response of high frequency photochemical reflectance index (PRI) measurements to environmental conditions in wheat. Remote Sens Environ 173:84–97

    Article  Google Scholar 

  • Mahlein AK (2016) Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    Article  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake C, Amako K, Shiraishi N, Sugimoto T (2009) Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system—relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Plant Cell Physiol 50:730–743

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami K, Ibaraki Y (2019) Time course of the photochemical reflectance index during photosynthetic induction: its relationship with the photochemical yield of photosystem II. Physiol Plant 165:524–536

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Packer L (1970a) Protonation and chloroplast membrane structure. J Cell Biol 47:332–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami S, Packer L (1970b) Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol 45:289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osório J, Osório ML, Romano A (2012) Reflectance indices as nondestructive indicators of the physiological status of Ceratonia siliqua seedlings under varying moisture and temperature regimes. Funct Plant Biol 39:588–597

    Article  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components—calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Peñuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296

    Article  Google Scholar 

  • Peñuelas J, Piñol J, Ogaya R, Filella I (1997) Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int J Remote Sens 18:2869–2875

    Article  Google Scholar 

  • Peñuelas J, Garbulsky MF, Filella I (2011) Photochemical reflectance index (PRI) and remote sensing of plant CO2 uptake. New Phytol 191:596–599

    Article  PubMed  Google Scholar 

  • Pinter PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR (2003) Remote sensing for crop management. Photogramm Eng Remote Sens 69:647–664

    Article  Google Scholar 

  • Porcar-Castell A, Garcia-Plazaola JI, Nichol CJ, Kolari P, Olascoaga B, Kuusinen N, Fernández-Marín B, Pulkkinen M, Juurola E, Nikinmaa E (2012) Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170:313–323

    Article  PubMed  Google Scholar 

  • Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA (2014) Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot 65:4065–4095

    Article  CAS  PubMed  Google Scholar 

  • Ripullone F, Rivelli AR, Baraldi R, Guarini R, Guerrieri R, Magnani F, Peñuelas J, Raddi S, Borghetti M (2011) Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses. Funct Plant Biol 38:177–186

    Article  CAS  PubMed  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Type III final rep. NASA/GSFC, Greenbelt

    Google Scholar 

  • Ruban AV (2015) Evolution under the sun: optimizing light harvesting in photosynthesis. J Exp Bot 66:7–23

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivak MN, Heber U, Walker DA (1985) Chlorophyll a fluorescence and light-scattering kinetics displayed by leaves during induction of photosynthesis. Planta 163:419–423

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Orlova L, Mysyagin S, Sinitsina J, Vodeneev V (2012) Analysis of the photosynthetic response induced by variation potential in geranium. Planta 235:703–712

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V (2014) Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant Cell Environ 37:2532–2541

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V (2015) Variation potential influence on photosynthetic cyclic electron flow in pea. Front Plant Sci 5:766

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhov V, Surova L, Morozova E, Sherstneva O, Vodeneev V (2016) Changes in H+-ATP synthase activity, proton electrochemical gradient, and pH in pea chloroplast can be connected with variation potential. Front Plant Sci 7:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhov V, Sukhova E, Gromova E, Surova L, Nerush V, Vodeneev V (2019a) The electrical signals-induced systemic photosynthetic response is accompanied with changes in photochemical reflectance index in pea. Funct Plant Biol 46:328–338

    Article  CAS  PubMed  Google Scholar 

  • Sukhov VS, Gromova EN, Sukhova EM, Surova LM, Nerush VN, Vodeneev VA (2019b) Analysis of correlations between the indexes of light-dependent reactions of photosynthesis and the photochemical reflectance index (PRI) in pea leaves under short-term illumination. Biochem Moscow Suppl Ser A 13:67–77

    Article  Google Scholar 

  • Sukhova E, Sukhov V (2018) Connection of the photochemical reflectance index (PRI) with the photosystem II quantum yield and nonphotochemical quenching can be dependent on variations of photosynthetic parameters among investigated plants: a meta-analysis. Remote Sens 10:771

    Article  Google Scholar 

  • Sukhova E, Sukhov V (2019) Analysis of light-induced changes in the photochemical reflectance index (PRI) in leaves of pea, wheat, and pumpkin using pulses of green-yellow measuring light. Remote Sens 11:810

    Article  Google Scholar 

  • Sukhova EM, Yudina LM, Vodeneev VA, Sukhov VS (2019) Analysis of changes in photochemical reflectance index (PRI) in relation to the acidification of the lumen of the chloroplasts of pea and geranium leaves under a short-term illumination. Biochem Moscow Suppl Ser A 13:243–252

    Article  Google Scholar 

  • Tikhonov AN (2013) pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  CAS  PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Garab G, Strasser RJ (2007) Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. Biochim Biophys Acta 1767:295–305

    Article  PubMed  CAS  Google Scholar 

  • Van Wittenberghe S, Alonso L, Malenovský Z, Moreno J (2019) In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS-NIR slow-induced conformational pigment bed changes. Photosynth Res 142:283–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilfan N, Van der Tol C, Yang P, Wyber R, Malenovský Z, Robinson SA, Verhoef W (2018) Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens Environ 211:345–356

    Article  Google Scholar 

  • Wójtowicz M, Wójtowicz A, Piekarczyk J (2016) Application of remote sensing methods in agriculture. Commun Biometry Crop Sci 11:31–50

    Google Scholar 

  • Wong CY, Gamon JA (2015a) The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytol 206:196–208

    Article  CAS  PubMed  Google Scholar 

  • Wong CY, Gamon JA (2015b) Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. New Phytol 206:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zecha CW, Link J, Claupein W (2013) Mobile sensor platforms: categorisation and research applications in precision farming. J Sens Sens Syst 2:51–72

    Article  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Filella I, Garbulsky MF, Peñuelas J (2016) Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation-use efficiencies. Remote Sens 8:677

    Article  Google Scholar 

  • Zinnert JC, Nelson JD, Hoffman AM (2012) Effects of salinity on physiological responses and the photochemical reflectance index in two co-occurring coastal shrubs. Plant Soil 354:45–55

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Science Foundation, Grant Number 17-76-20032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sukhov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudina, L., Sukhova, E., Gromova, E. et al. A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin. Photosynth Res 146, 175–187 (2020). https://doi.org/10.1007/s11120-020-00718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00718-x

Keywords

Navigation