Skip to main content
Log in

Improved Bounds on Quantum Learning Algorithms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples.

  • Hunziker et al.[Quantum Information Processing, to appear] conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is \(O(\frac{\log |C|}{\sqrt{{\hat{\gamma}}^{C}}})\), where \(\hat{\gamma}^{C}\) is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using \(O(\frac{\log |C| \log \log |C|}{\sqrt{{\hat{\gamma}}^{C}}})\) quantum black-box queries.

  • We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). We give positive and negative results on when the quantum and classical query complexities of these intermediate problems are polynomially related to each other.

  • Finally, we improve the known lower bounds on the number of quantum examples (as opposed to quantum black-box queries) required for ɛ, Δ-PAC learning any concept class of Vapnik-Chervonenkis dimension d over the domain \(\{0,1\}^n\) from \(\Omega({\frac d n})\) to \(\Omega(\frac{1}{\epsilon}\log \frac{1}{\delta}+d+\frac{\sqrt{d}}{\epsilon})\). This new lower bound comes closer to matching known upper bounds for classical PAC learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C., Bernstein E., Brassard G., Vazirani U. (1997). SIAM J. Comput 26(5m):1510

    Article  MATH  MathSciNet  Google Scholar 

  2. Grover L.K. (1996). Proceedings of the 28th ACM Symposium on Theory of Computing., pp. 212–219

  3. Deutsch D., Josza R. (1992). Proc. Royal Soc. London A 439:553

    Article  MATH  ADS  Google Scholar 

  4. Simon D.R. (1997). SIAM J. Comput 26(5):1474

    Article  MATH  MathSciNet  Google Scholar 

  5. Servedio R.A., Gortler S.J. (2004). SIAM J. Comput 33(5):1067

    Article  MATH  MathSciNet  Google Scholar 

  6. Angluin D. (1988). Machine Learning 2:319

    Google Scholar 

  7. Hunziker M., Meyer D.A., J. Park, J. Pommersheim, and M. Rothstein, arXiv: quant-ph/0309059 to appear in Quantum Information Processing

  8. Ambainis A., Iwama K., Kawachi A., Masuda H., Putra R.H., Yamashita S. (2004). Proceedings of STACS pp. 93–104

  9. Bshouty N.H., Jackson J.C. (1999). SIAM J. Comput 28(3):1136

    Article  MATH  MathSciNet  Google Scholar 

  10. Valiant L.G. (1984). Comm. ACM 27:1134

    Article  MATH  Google Scholar 

  11. Ehrenfeucht A., Haussler D., Kearns M., Valiant L. (1989). Informat Comput 82:247

    Article  MATH  MathSciNet  Google Scholar 

  12. Blumer A., Ehrenfeucht A., Haussler D., Warmuth M. (1989). J. Assoc. Comput. Mach 36(4):929

    MATH  MathSciNet  Google Scholar 

  13. Bshouty N., Cleve R., Gavaldà R., Kannan S., Tamon C. (1996). J. Comput. Syst. Sci 52(3):421

    Article  MATH  Google Scholar 

  14. R. Gavaldà. Proc. Ninth Structure in Complexity Theory Conference., 324 (1994)

  15. Heged˝s T. (1995). Proc. Eighth Conf. on Computational Learning Theory pp. 108–117

  16. Hellerstein L., Pillaipakkamnatt K., Raghavan V., Wilkins D. (1996). J. ACM 43(5):840–862

    Article  MATH  MathSciNet  Google Scholar 

  17. Beals R., Buhrman H., Cleve R., Mosca M., de Wolf R. Proceedings of the 39th IEEE Symposium on Foundation of Computer Science., pp. 352–361 (1998)

  18. Farhi E., Goldstone J., Gutmann S., Sipser M. (1998). Phys. Rev. Lett 81:5442

    Article  ADS  Google Scholar 

  19. Boyer M., Brassard G., Høyer P., Tapp A. (1998). Fortschritte der Physik 46(4–5):493

    Article  ADS  Google Scholar 

  20. Iwama K., Kawachi A., Raymond R., Yamashita S. arXiv:quant-ph/0411204 (2005)

  21. Bernstein E., Vazirani U. (1997). SIAM J. Comput 26(5):1411

    Article  MATH  MathSciNet  Google Scholar 

  22. van Dam W. Proceedings of the 39th IEEE Symposium on Foundation of Computer Science., pp. 362–367 (1998)

  23. Kearns M., Vazirani U. An Introduction to Computational Learning Theory. MIT Press, 1994

  24. Shi Y. (2000). Informat. Processing Lett 75:79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alp Atici.

Additional information

Pacs: 03.67.Lx, 89.80.+h, 02.70.-c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atici, A., Servedio, R.A. Improved Bounds on Quantum Learning Algorithms. Quantum Inf Process 4, 355–386 (2005). https://doi.org/10.1007/s11128-005-0001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-005-0001-2

Keywords

Navigation