Skip to main content
Log in

Dissipative and non-dissipative single-qubit channels: dynamics and geometry

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Single-qubit dissipative and non-dissipative channels, set in the general scenario of a system’s interaction with a squeezed thermal bath, are compared in the Choi isomorphism framework, to bring out their contrasting rank and geometric properties. The equivalence of commutativity between the signal states and the Kraus operators to that between the system and interaction Hamiltonian, and thus to non-dissipativeness, is pointed out. Two distinct unitarily equivalent Kraus representations of the dissipative channel, one based on the Choi isomorphism, and the other based on an ansatz, are used to illustrate that the orthogonality of Kraus operators under the Hilbert–Schmidt inner product is not a unitary invariant. Unlike the non-dissipative (Pauli) channels, the dissipative (squeezed generalized amplitude damping) channels do not form a convex set. Further, whereas the rank of Pauli channels can be any positive integer up to 4, that of the amplitude damping ones is either 2 or 4. In the latter case, a noise range is identified where environmental squeezing counteracts the effect of thermal decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, Canada (1973)

    Google Scholar 

  2. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

  4. Zurek, W.H.: Decoherence and the transition from quantum to classical. Prog. Theor. Phys. 87, 281 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  6. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Sudarshan, E.C.G., Mathews, P., Rau, J.: Stochastic dynamics of quantum-mechanical systems. Phys. Rev. 121, 920–924 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Cubitt, T.S., Eisert, J., Wolf, M.M.: The complexity of relating quantum channels to master equations. Commun. Math. Phys. 310, 383–426 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Jamiolkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  12. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MATH  Google Scholar 

  13. Leung, D.W.: Choi’s proof as a recipe for quantum process tomography. J. Math. Phys. 44, 528–533 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Havel, T.F.: Robust procedures for converting among Lindblad, Kraus and matrix representations of quantum dynamical semigroups. J. Math. Phys. 44, 534–557 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Rodrguez-Rosario, C.A., Modi, K.: Completely positive maps and classical correlations. J. Phys. A Math. Theor. 41, 205301 (2008)

    Article  ADS  Google Scholar 

  16. Devi, A.R.U., Rajagopal, A.K.: Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity. Phys. Rev. A 83, 022109 (2011)

    Article  ADS  Google Scholar 

  17. Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  18. Uhlman, A.: On 1-qubit channels. J. Phys. A Math. Gen. 34, 7047–7055 (2001)

    Article  ADS  Google Scholar 

  19. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A. Math. Theor. 40, 13735–13754 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Shao, J., Ge, M.-L., Cheng, H.: Decoherence of quantum-nondemolition systems. Phys. Rev. E 53, 1243–1245 (1996)

    Article  ADS  Google Scholar 

  21. Mozyrsky, D., Privman, V.: Adiabatic decoherence. J. Stat. Phys. 91, 787–799 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gangopadhyay, G., Kumar, M.S., Dattagupta, S.: On dissipationless decoherence. J. Phys. A Math. Gen. 34, 5485–5495 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Braginsky, V.B., Vorontsov, Y.I., Thorne, K.S.: Quantum nondemolition measurements. Science 209, 547–557 (1980)

    Article  ADS  Google Scholar 

  24. Caves, C.M., Thorne, K.D., Drever, R.W.P., Sandberg, V.D., Zimmerman, M.: On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980)

    Article  ADS  Google Scholar 

  25. Bocko, M.F., Onofrio, R.: On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress. Rev. Mod. Phys. 68, 755–799 (1996)

    Article  ADS  Google Scholar 

  26. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  27. Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., et al.: Decoherence of quantum superpositions through coupling to engineered reservoirs. Nature 403, 269–273 (2000)

    Article  ADS  Google Scholar 

  28. Turchette, Q.A., Myatt, C.J., King, B.E., Sackett, C.A., et al.: Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs. Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  29. Pryde, G.J., O’Brien, J.L., White, A.G., et al.: Measuring a photonic qubit without destroying it. Phys. Rev. Lett. 92, 190402 (2004)

    Article  ADS  Google Scholar 

  30. O’Brien, J.L., Pryde, G.J., White, A.G., et al.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  31. Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., et al.: Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 10, 1–8 (2010)

    Google Scholar 

  32. Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., et al.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)

    Article  ADS  Google Scholar 

  33. Kennedy, T.A.B., Walls, D.F.: Squeezed quantum fluctuations and macroscopic quantum coherence. Phys. Rev. A 37, 152–157 (1988)

    Article  ADS  Google Scholar 

  34. Kim, M.S., Bužek, V.: Photon statistics of superposition states in phase-sensitive reservoirs. Phys. Rev. A 47, 610–619 (1993)

    Article  ADS  Google Scholar 

  35. Bužek, V., Knight, P.L., Kudryavtsev, I.K.: Three-level atoms in phase-sensitive broadband correlated reservoirs. Phys. Rev. A 44, 1931–1947 (1991)

    Article  ADS  Google Scholar 

  36. Georgiades, N.P., Polzik, E.S., Edamatsu, K., Kimble, H.J., Parkins, A.S.: Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426–3429 (1995)

    Article  ADS  Google Scholar 

  37. Turchette, Q.A., Georgiades, N.P., Hood, C.J., Kimble, H.J., Parkins, A.S.: Squeezed excitation in cavity QED: experiment and theory. Phys. Rev. A 58, 4056–4077 (1998)

    Article  ADS  Google Scholar 

  38. Banerjee, S., Srikanth, R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335–344 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  39. Uhlman, A.: General Theory of Information Transfer and Combinatorics, pp. 413–424. Springer, Berlin (2006)

    Book  Google Scholar 

  40. Narang, G.: Simulating a single-qubit channel using a mixed-state environment. Phys. Rev. A 75, 032305 (2007)

    Article  ADS  Google Scholar 

  41. Bengtsson, I., Kyczkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  42. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  43. Maheshan, E.: Depolarizing behavior of quantum channels in higher dimensions. Quantum Inf. Comput. 11, 0466–484 (2011)

    Google Scholar 

  44. Bowdrey, M.D., Oi, D.K.L., Short, A.J., Banaszek, K., Jones, J.A.: Fidelity of single qubit maps. Phys. Lett. A 294, 258–260 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Nielsen, M.A.: A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249–252 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Cortese, J.: Trends in Quantum Physics, pp. 125–172. Nova Science Publishers Inc., New York (2004)

    Google Scholar 

Download references

Acknowledgments

Author S. Omkar acknowledges Manipal University, Manipal, India for accepting this work as a part of Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srikanth.

Appendix: Canonical Kraus representation of SGAD channels

Appendix: Canonical Kraus representation of SGAD channels

The action of a SGAD channel on the single qubit state \(\rho \), denoted \(\mathcal E \), is given by [17]:

$$\begin{aligned} \langle \sigma _x(t)\rangle&= A\langle \sigma _x(0)\rangle -B\langle \sigma _y(0)\rangle ,\nonumber \\ \langle \sigma _y(t)\rangle&= G\langle \sigma _x(0)\rangle -B\langle \sigma _y(0)\rangle ,\nonumber \\ \langle \sigma _z(t)\rangle&= H\langle \sigma _z(0)\rangle -Y,\nonumber \end{aligned}$$

where

$$\begin{aligned} A&= \left[ 1+\frac{1}{2}(e^{\gamma _0 at}-1)(1+\cos (\Phi ))\right] e^{\frac{-\gamma _0(2N+1+a)t}{2}},~~ \nonumber \\ B&= \sin (\Phi )\sin \,\mathrm{h}\left( \frac{\gamma _0 at}{2}\right) e^{\frac{-\gamma _0(2N+1)t}{2}},\nonumber \\ G&= \left[ 1+\frac{1}{2}(e^{\gamma _0 at}-1)(1-\cos (\Phi ))\right] e^{\frac{-\gamma _0 (2N+1+a)t}{2}},~~ H= e^{-\gamma _0(2N+1)t},\nonumber \\ Y&= \frac{(1-e^{-\gamma _0(2N+1)t})}{2N+1}. \end{aligned}$$
(44)

Here \(a = \sin \,\mathrm{h}(2r)[2 N_{th} + 1]\) and rest of the terms are defined in Sect. 2.2 and 3.

$$\begin{aligned} \begin{array}{ll} J_{+}^\prime \equiv \sqrt{p}\left[ \begin{array}{ll} \sqrt{1-\alpha ^\prime } &{} 0 \\ 0 &{} 1 \end{array}\right] , ~~~~ &{} J_{-}^\prime \equiv \sqrt{p}\left[ \begin{array}{ll} 0 &{} 0 \\ \sqrt{\alpha ^\prime } &{} 0 \end{array}\right] , \\ K_{+}^\prime \equiv \sqrt{1-p}\left[ \begin{array}{ll} \sqrt{1-\mu ^\prime } &{} 0 \\ 0 &{} \sqrt{1-\nu ^\prime } \end{array}\right] , ~~~~ &{} K_{-}^\prime \equiv \sqrt{1-p}\left[ \begin{array}{ll} 0 &{} \sqrt{\nu ^\prime } \\ \sqrt{\mu }e^{-i\Phi } &{} 0 \end{array}\right] , \end{array} \end{aligned}$$
(45)

where \(0 \le p \le 1\) [6, 17]. Here

$$\begin{aligned} p&= 1-\frac{1}{(A^\prime +B^\prime -C^\prime -1)^2-4D^\prime } \left[ A^{\prime 2} B^\prime \!+\! C^{\prime 2} \!+\! A^\prime (B^{\prime 2}\! -\! C^\prime \!-\! B^\prime (1\!+\!C^\prime )-D^\prime ) \nonumber \right. \\&\quad - (1+B^\prime )D^\prime -C^\prime (B^\prime +D^\prime -1)\nonumber \\&\quad \pm \left. 2\sqrt{D^\prime (B^\prime -A^\prime B^\prime \!+\!(A^\prime -1)C^\prime +D^\prime )(A^\prime -A^\prime B^\prime \!+\!(B^\prime -1)C^\prime \!+\!D^\prime )}\right] ,\nonumber \\ \end{aligned}$$
(46)

where

$$\begin{aligned} A^\prime&= \frac{2N+1}{2N} \frac{\sin \,\mathrm{h}^2(\gamma _0 at/2)}{\sin \,\mathrm{h}(\gamma _0(2N+1)t/2)} \exp \left( -\gamma _0(2N+1)t/2\right) ,\nonumber \\ B^\prime&= \frac{N}{2N+1}(1-\exp (-\gamma _0(2N+1)t)), \nonumber \\ C^\prime&= A^\prime + B^\prime + \exp (-\gamma _0 (2N+1)t),~~ \nonumber \\ D^\prime&= \cos \,\mathrm{h}^2(\gamma _0 at/2)\exp (-\gamma _0(2N+1)t). \end{aligned}$$
(47)

Also

$$\begin{aligned} \nu ^\prime&= \frac{N}{(1-p)(2N+1)}(1-e^{-\gamma _0(2N+1)t}),\nonumber \\ \mu ^\prime&= \frac{2N+1}{2(1-p) N}\frac{\sin \,\mathrm{h}^2(\gamma _0at/2)}{\sin \,\mathrm{h}(\gamma _0(2N+1)t/2)} \exp \left( -\frac{\gamma _0}{2}(2N+1)t\right) ,\nonumber \\ \alpha ^\prime&= \frac{1}{p}\left( 1 - p_2[\mu (t)+\nu (t)] - e^{-\gamma _0(2N+1)t}\right) . \end{aligned}$$
(48)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omkar, S., Srikanth, R. & Banerjee, S. Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf Process 12, 3725–3744 (2013). https://doi.org/10.1007/s11128-013-0628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0628-3

Keywords

Navigation