Skip to main content
Log in

Dynamic quantum secret sharing protocol based on GHZ state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This work proposes a new dynamic quantum secret sharing (DQSS) protocol using the measurement property of Greenberger–Horne–Zeilinger state and the controlled-NOT gate. In the proposed DQSS protocol, an agent can obtain a shadow of the secret key by simply performing a measurement on single photons. In comparison with the existing DQSS protocols, it provides better qubit efficiency and has an easy way to add a new agent. The proposed protocol is also free from the eavesdropping attack, the collusion attack, and can have an honesty check on a revoked agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Jiang, M., Huang, X., Zhou, L., Zhou, Y., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)

    Article  Google Scholar 

  3. Massoud, H., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. 55(10), 1828–1831 (2012)

    Article  Google Scholar 

  4. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    Article  ADS  MATH  Google Scholar 

  6. Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  8. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  9. Zhou, P., Li, X.H., Liang, Y.J., Deng, F.G., Zhou, H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)

    Article  MathSciNet  Google Scholar 

  10. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Zhang, Z.J., Yang, J., Man, Z.X., Li, Y.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33(1), 133–136 (2005)

    Article  ADS  Google Scholar 

  13. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. Math. Gen. 39(45), 14089–14099 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    Article  ADS  Google Scholar 

  18. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zhang, Z.J., Man, Z.X.: Reply to “Comment on ’Multiparty quantum secret sharing of classical messages based on entanglement swapping”’. Phys. Rev. A 76(3), 036302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J., Zhang, Z.J.: Many-agent controlled multi-player quantum secret sharing scheme. Int. J. Mod. Phys. C 18(2), 177–185 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Wang, X., Liu, Y.M., Han, L.F., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication with high-dimensional quantum superdense coding. Int. J. Quantum Inf. 6(6), 1155–1163 (2008)

    Article  MATH  Google Scholar 

  22. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342(1–2), 60–66 (2005)

  23. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of key using practical faint laser pulses. Chin. Phys. Lett. 22(7), 1588–1591 (2005)

    Article  ADS  Google Scholar 

  24. Han, L.F., Liu, Y.M., Zhang, Z.J.: Multiparty quantum secret sharing of classical message using cavity quantum electrodynamic system. Chin. Phys. Lett. 23(8), 1988–1991 (2006)

    Article  ADS  Google Scholar 

  25. Zhang, Z.J.: Multiparty secret sharing of quantum information via cavity QED. Opt. Commun. 261(1), 199–202 (2006)

    Article  ADS  Google Scholar 

  26. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361(1), 233–238 (2006)

    Article  ADS  Google Scholar 

  27. Han, L.F., Liu, Y.M., Yuan, H., Zhang, Z.J.: Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations. Chin. Phys. Lett. 24(12), 3312–3315 (2007)

    Article  ADS  Google Scholar 

  28. Han, L.F., Liu, Y.M., Shi, S.H., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A 361(1–2), 24–28 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Zhang, Z.J., Liu, Y.M., Fang, M., Wang, D.: Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement. Int. J. Mod. Phys. C 18(12), 1885–1901 (2007)

    Article  ADS  MATH  Google Scholar 

  30. Zhang, Z.J., Gao, G., Wang, X., Han, L.F., Shi, S.H.: Multiparty quantum secret sharing based on the improved Bostrom–Felbinger protocol. Opt. Commun. 269(2), 418–422 (2007)

    Article  ADS  Google Scholar 

  31. Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phys. C 20(10), 1531–1535 (2009)

    Article  ADS  MATH  Google Scholar 

  32. Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)

    Article  MATH  Google Scholar 

  33. Hwang, C.-C., Hwang, T., Li, C.-M.: Enhancement of GAO’s multiparty quantum secret sharing. Commun. Theor. Phys 56(1), 79–82 (2011)

    Article  ADS  MATH  Google Scholar 

  34. Hwang, T., Hwang, C.-C., Li, C.-M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83(4), 045004 (2011)

    Article  ADS  MATH  Google Scholar 

  35. Hwang, T., Hwang, C.-C., Yang, C.-W., Li, C.-M.: Revisiting Deng et al.’s multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 50(9), 2790–2798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  37. Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51(7), 2291–2306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. 55(3), 460–464 (2012)

    Article  Google Scholar 

  39. Tseng, H.-Y., Tsai, C.-W., Hwang, T., Li, C.-M.: Quantum secret sharing based on quantum search algorithm. Int. J. Theor. Phys. 51(10), 3101–3108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12(2), 1089–1107 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12(1), 685–697 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12(1), 331–344 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Jia, H.-Y., Wen, Q.-Y., Gao, F., Qin, S.-J., Guo, F.-Z.: Dynamic quantum secret sharing. Phys. Lett. A 376(10–11), 1035–1041 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Wang, T.-Y., Li, Y.-P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12(5), 1991–1997 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  47. Liao, C.-H., Yang, C.-W., Hwang, T.: Comment on “Dynamic quantum secret sharing”. Quantum Inf. Process. (2013). doi:10.1007/s11128-013-0591-z

    MathSciNet  MATH  Google Scholar 

  48. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, India (1984)

  49. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “Quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Zhang, M., Wei, L.-F.: Quantum gate implementations in the separated ion-traps by fast laser pulses. Chin. Phys. Lett. 29(8), 080301 (2012)

    Article  ADS  Google Scholar 

  53. Gao, G., Cai, G., Huang, S., Tang, L., Gu, W., Wang, M., Jiang, N.: 1\(\rightarrow \)N quantum controlled phase gate realized in a circuit QED system. Sci. China Phys. 55(8), 1422–1426 (2012)

    Article  Google Scholar 

  54. Yan, X., Jie, S., Pei-Min, L., He-Shan, S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B 44(2), 025503 (2011)

    Article  ADS  Google Scholar 

  55. Jiang, N.-Q., Xu, P., Wu, L.: Realization of 1 \(\rightarrow \) n controlled phase gate in cavity QED. Int. J. Quant. Inf. 09(02), 773–778 (2011)

    Article  MATH  Google Scholar 

  56. Yang, C.-P., Liu, Y.-X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)

    Article  ADS  Google Scholar 

  57. Wang, Y., Su, X., Shen, H., Tan, A., Xie, C., Peng, K.: Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys. Rev. A 81(2), 022311 (2010)

    Article  ADS  Google Scholar 

  58. Tom, M., Jaideep, M., Bruno, N.: Implementing quantum gates using the ferromagnetic spin- J XXZ chain with kink boundary conditions. New J. Phys. 12(2), 025003 (2010)

    Article  Google Scholar 

  59. Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)

    Article  ADS  Google Scholar 

  60. Ghosh, J., Geller, M.R.: Controlled-not gate with weakly coupled qubits: dependence of fidelity on the form of interaction. Phys. Rev. A 81(5), 052340 (2010)

    Article  ADS  Google Scholar 

  61. Miao, Z., Xiaohui, J., Jia, H.Y., Wei, L.F.: Controlled-NOT gates with ion traps could be implemented by only two-step laser pulses. J. Phys. B 42(3), 035501 (2009)

    Article  ADS  Google Scholar 

  62. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Science Council of the Republic of China, Taiwan, for partially supporting this research in finance under the Contract No. NSC 100-2221-E-006-152-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelish Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, CH., Yang, CW. & Hwang, T. Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf Process 13, 1907–1916 (2014). https://doi.org/10.1007/s11128-014-0779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0779-x

Keywords

Navigation