Skip to main content
Log in

Two-step measurement of the concurrence for hyperentangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We describe an efficient way of measuring the concurrence for the hyperentanglement. In this protocol, the hyperentangled state is encoded in both the polarization and the momentum degrees of freedom. We show that measurement of the concurrences of both polarization and momentum entanglements can be conversed into the measurement of the total probability of picking up the odd-parity state and can be measured directly. This protocol requires the weak cross-Kerr nonlinearity to construct the quantum nondemolition measurement and does not require the sophisticated controlled-not gate operation. It is feasible in future experimental technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  5. Bastos, W.P., Cardoso, W.B., Avelar, A.T., de Almeida, N.G., Baseia, B.: Controlled teleportation via photonic Faraday rotations in low-Q cavities. Quantum Inf. Process. 11, 1867 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Karlsson, A., Bourennane, M.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901 (2004)

    Article  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59, 2825 (2014)

    Article  Google Scholar 

  10. Su, X.L.: Applying Gaussian quantum discord to quantum key distribution Chin. Sci. Bull. 59, 1083 (2014)

    Article  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571 (2013)

    Article  Google Scholar 

  13. Liu, Y.: Deleting a marked state in quantum database in a duality computing mode. Chin. Sci. Bull. 58, 2927 (2013)

    Article  Google Scholar 

  14. Liu, Y., Ou-Yang, X.P.: A quantum algorithm that deletes marked states from an arbitrary database. Chin. Sci. Bull. 58, 2329 (2013)

    Article  Google Scholar 

  15. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. Chin. Phys. Mech. Astron. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  16. Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. Chin. Phys. Mech. Astron. 57, 1210–1217 (2014)

    Article  ADS  Google Scholar 

  17. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  19. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  20. Walborn, S.P., Ribeiro, P.H.S., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)

    Article  ADS  Google Scholar 

  21. Romero, G., López, C.E., Lastra, F., Solano, E., Retamal, J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007)

    Article  ADS  Google Scholar 

  22. Lee, S.M., Ji, S.W., Lee, H.W., Zubairy, M.S.: Proposal for direct measurement of concurrence via visibility in a cavity QED system. Phys. Rev. A 77, 040301(R) (2008)

    Article  ADS  Google Scholar 

  23. Zhang, L.H., Yang, M., Cao, Z.L.: Direct measurement of the concurrence for two-photon polarization entangled pure states by parity-check measurements. Phys. Lett. A 377, 1421 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Zhang, L.H., Yang, Q., Song, W., Cao, Z.L.: Direct measurement of the concurrence of two-photon polarization-entangled states. Phys. Rev. A 88, 062342 (2013)

    Article  ADS  Google Scholar 

  25. James, D.F., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  26. Kemp, A., Saito, S., Munro, W.J., Nemoto, K., Semba, K.: Superconducting qubit as a quantum transformer routing entanglement between a microscopic quantum memory and a macroscopic resonator. Phys. Rev. B 84, 104505 (2011)

    Article  ADS  Google Scholar 

  27. Zhou, L., Sheng, Y.B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)

    Article  ADS  Google Scholar 

  28. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  29. Vallone, G., Ceccarelli, R.De, Martini, F., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)

    Article  ADS  Google Scholar 

  30. Walborn, S.P., Pádua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008)

    Article  Google Scholar 

  32. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  33. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 20664–20667 (2012)

    Google Scholar 

  34. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  35. Wang, T.J., Wang, C.: Generation and analysis of hyperentangled multiqubit states for photons using quantum-dot spins in optical microcavities. J. Opt. Soc. Am. B 30, 2689–2695 (2013)

    Article  ADS  Google Scholar 

  36. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 81, 044305 (2010)

    Article  ADS  Google Scholar 

  39. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  40. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  41. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  42. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  43. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  44. Graham, T.M., Barreiro, J.T., Mohseni, M., Kwiat, P.G.: Hyperentanglement-enabled direct characterization of quantum dynamics. Phys. Rev. Lett. 110, 060404 (2013)

    Article  ADS  Google Scholar 

  45. Simon, D.S., Sergienko, A.V.: High-capacity quantum key distribution via hyperentangled degrees of freedom. New J. Phys. 16, 063052 (2014)

    Article  ADS  Google Scholar 

  46. Portolan, S., Einkemmer, L., Vörös, Z., Weihs, G., Rabl, P.: Generation of hyper-entangled photon pairs in coupled microcavities. New J. Phys. 16, 063030 (2014)

    Article  ADS  Google Scholar 

  47. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  49. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    Article  ADS  Google Scholar 

  50. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  51. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  52. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  53. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  54. Zhou, L., Sheng, Y.B.: Efficient single-photon entanglement concentration for quantum communications. Opt. Commun. 313, 217 (2014)

    Article  ADS  Google Scholar 

  55. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.L., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71–78 (2013)

    Article  ADS  Google Scholar 

  56. Zhou, L., Sheng, Y.B., Wang, L., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307–1320 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Zhang, W., Rui, P.S., Zhang, Z.Y., Yang, Q.: Probabilistically cloning two single-photon states by using weak cross-Kerr nonlinearities. New J. Phys. 16, 083019 (2014)

    Article  ADS  Google Scholar 

  58. Dong, L., Wang, J.X., Shen, H.Z., Li, D., Xiu, X.M., Gao, Y.J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel. Quantum Inf. Process. 13, 1413–1424 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Xiu, X.M., Dong, L., Shen, H.Z., Gao, Y.J., Yi, X.X.: Two-party quantum privacy comparison with polarization-entangled Bell state and the coherent states. Quantum Inf. Comput. 14, 236–254 (2014)

    MathSciNet  Google Scholar 

  60. He, B., Bergou, J.A., Ren, Y.H.: Universal discriminator for completely unknown optical qubits. Phys. Rev. A 76, 032301 (2007)

    Article  ADS  Google Scholar 

  61. He, B., Nadeem, M., Bergou, J.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)

    Article  ADS  Google Scholar 

  62. He, B., Ren, Y., Bergou, J.A.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)

    Article  ADS  Google Scholar 

  63. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  64. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  65. Myers, C.R., Silva, M., Nemoto, K., Munro, W.J.: Stabilizer quantum error correction with quantum bus computation. Phys. Rev. A 76, 012303 (2007)

    Article  ADS  Google Scholar 

  66. Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302(R) (2006)

    Article  ADS  Google Scholar 

  67. Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating chi-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Xiu, X.M., Dong, L., Shen, H.Z., Gao, Y.J., Yi, X.X.: Construction scheme of a two-photon polarization controlled arbitrary phase gate mediated by weak cross-phase modulation. J. Opt. Soc. Am. B 30, 589–597 (2013)

    Article  ADS  Google Scholar 

  69. Vallone, G., Ceccarelli, R., De Martini, F., Mataloni, P.: Hyperentanglement witness. Phys. Rev. A 78, 062305 (2008)

    Article  ADS  Google Scholar 

  70. White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83, 3103 (1999)

    Article  ADS  Google Scholar 

  71. Rebić, S., Twamley, J., Milburn, G.J.: Giant kerr nonlinearities in circuit quantum electrodynamics. Phys. Rev. Lett. 103, 150503 (2009)

    Article  ADS  Google Scholar 

  72. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  73. Feizpour, A., Xing, X., Steinberg, A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  74. Zhu, C., Huang, G.: Giant kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. Opt. Express 19, 23364–23376 (2011)

    Article  ADS  Google Scholar 

  75. He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)

    Article  ADS  Google Scholar 

  76. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  77. Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007)

    Article  ADS  Google Scholar 

  78. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

  79. He, B., Scherer, A.: Continuous-mode effects and photon-photon phase gate performance. Phys. Rev. A 85, 033814 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 61401222, the Qing Lan Project in Jiangsu Province, the University Natural Science Research Project of Jiangsu Province of China (Grant No. 13KJB140010), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, YB., Guo, R., Pan, J. et al. Two-step measurement of the concurrence for hyperentangled state. Quantum Inf Process 14, 963–978 (2015). https://doi.org/10.1007/s11128-015-0916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0916-1

Keywords

Navigation