Skip to main content
Log in

A quantum cellular automaton for one-dimensional QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a discrete spacetime formulation of quantum electrodynamics in one dimension (a.k.a the Schwinger model) in terms of quantum cellular automata, i.e. translationally invariant circuits of local quantum gates. These have exact gauge covariance and a maximum speed of information propagation. In this picture, the interacting quantum field theory is defined as a “convergent” sequence of quantum cellular automata, parameterized by the spacetime lattice spacing—encompassing the notions of continuum limit and renormalization, and at the same time providing a quantum simulation algorithm for the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14(7), 073050 (2012)

    Article  ADS  Google Scholar 

  2. Ambjørn, J., Jurkiewicz, J., Loll, R.: Emergence of a 4d world from causal quantum gravity. Phys. Rev. Lett. 93(13), 131301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. Arnault, P., Debbasch, F.: Quantum walks and gravitational waves. arXiv preprint arXiv:1609.00722 (2016)

  4. Arnault, P., Molfetta, G.D., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Arrighi, P., Facchini, S.: Quantum walking in curved spacetime: \((3+1)\)-dimensions, and beyond. Pre-print arXiv:1609.00305 (2016)

  6. Arrighi, P., Forets, M., Nesme, V.: The dirac equation as a quantum walk: higher-dimensions, convergence. Pre-print arXiv:1307.3524 (2013)

  7. Arrighi, P., Grattage, J.: A quantum game of life. In second symposium on cellular automata Journées Automates Cellulaires (JAC 2010), Turku, December 2010. TUCS Lecture Notes 13, pp. 31–42 (2010)

  8. Arrighi, P., Molfetta, G.D., Eon, N.: A gauge-invariant reversible cellular automaton. In: International Workshop on Cellular Automata and Discrete Complex Systems, pp. 1–12. Springer (2018)

  9. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk)

  10. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11, 13–22 (2012)

    Article  MathSciNet  Google Scholar 

  11. Arrighi, P., Patricot, C.: A note on the correspondence between qubit quantum operations and special relativity. J. Phys. A: Math. Gen. 36(20), L287–L296 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Arrighi, P., Facchini, S., Forets, M.: Discrete lorentz covariance for quantum walks and quantum cellular automata. New J. Phys. 16(9), 093007 (2014)

    Article  MathSciNet  Google Scholar 

  13. Arrighi, P., Nesme, V., Forets, M.: The dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A: Math. Theor. 47(46), 465302 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quant. Inf. Process. 15, 3467–3486 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bialynicki-Birula, I., Weyl, D.: Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D. 49(12), 6920–6927 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly special relativity from quantum cellular automata. EPL (Europhysics Letters) 109(5), 50003 (2015)

    Article  ADS  Google Scholar 

  17. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, weyl equation and the lorentz group. Found. Phys. 47(8), 1065–1076 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Thirring quantum cellular automaton. Phys. Rev. A 97(3), 032132 (2018)

    Article  ADS  Google Scholar 

  19. Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Quantum walks in external gauge fields. arXiv:1808.10850v1 (2018)

  20. Debbasch, F: Action principles for quantum automata and lorentz invariance of discrete time quantum walks. arXiv preprint arXiv:1806.02313 (2018)

  21. DeGrand, T., DeTar, C.: Lattice Methods for Quantum Chromodynamics. World Scientific, Singapore (2006)

    Book  Google Scholar 

  22. Destri, C., de Vega, H.J.: Light cone lattice approach to fermionic theories in 2-d: the massive Thirring model. Nucl. Phys. B 290, 363 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. Eisert, J., Gross, D.: Supersonic quantum communication. Phys. Rev. Lett. 102(24), 240501 (2009)

    Article  ADS  Google Scholar 

  24. Ercolessi, E., Facchi, P., Magnifico, G., Pascazio, S., Pepe, F.V.: Phase transitions in \({Z}_{n}\) gauge models: Towards quantum simulations of the schwinger-weyl qed. Phys. Rev. D 98, 074503 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Farrelly, T.C.: Insights from Quantum Information into Fundamental Physics. PhD thesis, University of Cambridge, 2015. arXiv:1708.08897 (2015)

  26. Farrelly, T.C., Short, A.J.: Causal fermions in discrete space-time. Phys. Rev. A 89(1), 012302 (2014)

    Article  ADS  Google Scholar 

  27. Feynman, H.: Quantum mechanics and path integrals. McGraw-Hill. Feynman relativistic chessboard (1965)

  28. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  29. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  30. Fillion-Gourdeau, F., MacLean, S., Laflamme, R.: Algorithm for the solution of the dirac equation on digital quantum computers. Phys. Rev. A 95, 042343 (2017)

    Article  ADS  Google Scholar 

  31. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  32. Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  33. Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum algorithms for fermionic quantum field theories. arXiv:1404.7115v1 (2014)

  34. Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012)

    Article  ADS  Google Scholar 

  35. Kaplan, D.B.: Chiral symmetry and lattice fermions. arXiv:0912.2560v2 (2009)

  36. Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018)

    Article  ADS  Google Scholar 

  37. Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98(3), 032331 (2018)

    Article  ADS  Google Scholar 

  38. Kogut, J., Susskind, L.: Hamiltonian formulation of wilson’s lattice gauge theories. Phys. Rev. D 11(2), 395 (1975)

    Article  ADS  Google Scholar 

  39. Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., et al.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016)

    Article  ADS  Google Scholar 

  40. Melnikov, K., Weinstein, M.: Lattice schwinger model: confinement, anomalies, chiral fermions, and all that. Phys. Rev. D 62(9), 094504 (2000)

    Article  ADS  Google Scholar 

  41. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)

  42. Molfetta, G.D., Pérez, A.: Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys. 18(10), 103038 (2016)

    Article  Google Scholar 

  43. Molfetta, G.D., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Physica A 397, 157–168 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  44. Nielsen, H.B., Ninomiya, M.: A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105(2–3), 219–223 (1981)

    Article  ADS  Google Scholar 

  45. Osborne, T.J.: Continuum limits of quantum lattice systems. arXiv:1901.06124v1 (2019)

  46. Park, S.T.: Propagation of a relativistic electron wave packet in the dirac equation. Phys. Rev. A 86(6), 062105 (2012)

    Article  ADS  Google Scholar 

  47. Quigg, C.: Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, Princeton (2013)

    Book  Google Scholar 

  48. Rico, E., Pichler, T., Dalmonte, M., Zoller, P., Montangero, S.: Tensor networks for lattice gauge theories and atomic quantum simulation. Phys. Rev. Lett. 112(20), 201601 (2014)

    Article  ADS  Google Scholar 

  49. Rovelli, C.: Simple model for quantum general relativity from loop quantum gravity. J. Phys. 314, 012006 (2011)

    Google Scholar 

  50. Schumacher, B., Werner, R.: Reversible quantum cellular automata. arXiv pre-print quant-ph/0405174, (2004)

  51. Silvi, P.: Rico, enrique, calarco, tommaso, montangero, simone: lattice gauge tensor networks. New J. Phys. 16(10), 103015 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  52. Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Physica D 69(3), 327–332 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  53. Zohar, E., Cirac, J.I., Reznik, B.: Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79(1), 014401 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

CB was supported by the National Research Foundation of Korea (NRF-2018R1D1A1A02048436). PA would like to thank Pablo Arnault, Nathanaël Éon and Giuseppe Di Molfetta for helpful discussions. TCF would like to thank Tony Short and Tobias Osborne for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Arrighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrighi, P., Bény, C. & Farrelly, T. A quantum cellular automaton for one-dimensional QED. Quantum Inf Process 19, 88 (2020). https://doi.org/10.1007/s11128-019-2555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2555-4

Navigation