Skip to main content
Log in

Modeling strategic group dynamics: A hidden Markov approach

  • Published:
QME Aims and scope Submit manuscript

Abstract

With competition playing a critical role in market-based strategic planning and implementation, identifying and understanding competiton and competitive dynamics has become critical. In this vein, the strategic groups perspective has emerged as a powerful means to understand such competitive phenomena. Empirical approaches to model competitive dynamics within the strategic groups framework, however, have been piece meal as researchers typically resort to distinct sequential analysis by time period. To overcome the limitations of these simplistic approaches, we develop a hidden Markov model to study strategic group (competitive) dynamics. In this approach, we explicitly account for competitive dynamics over time by modeling strategic group memberships as latent states that follow a first-order Markov process. Thus, we explictly model the notion that firms adopt their strategy for the next time period based on their current strategy and respective outcomes. We illustrate the model with longitudinal data from COMPUSTAT on 63 public banks from the tri-state region of NY-OH-PA. The results show the proposed model to be superior to a number of viable alternative approaches that have been suggested in the literature. We find the existence of three strategic groups: the leveraged group has low current assets compared to current liabilities, high debt to equity, and high total borrowing to assets. The lending group consists of the largest banks that focus on lending with high ratios of gross loans to securities and gross loans to deposits. The balanced group has the largest number of banks where the values of the financial and product ratios are intermediate compared to the leveraged and lending groups. The asymmetries in the switching probabilites are also evident as there seems to be a higher probability of switching into the balanced group than switching out of this group. The switching probabilites are symmetric between the the leveraged and lending groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We used the Hoover’s Online database to obtain information on the location of the headquarters of banks in order to identify the 63 banks. These banks were selected on the basis of having complete data for the time periods selected in this tri-state area.

  2. For each of the 10 variables, we computed the grand mean \( {\bar{Y}^r } \)and grand standard deviation \( S_Y^\gamma \) across all banks and time periods, and then applied the following transformation: \( {Y_{it}} = \frac{{\left( {Y_{it}^\gamma - {{\bar{Y}}^\gamma }} \right)}}{{S_Y^\gamma }} \), where \( Y_{it}^\gamma \) denotes the ‘raw’ data. This transformation preserves the original dynamic structure in the data (because the grand mean and standard deviation are not time specific), while it facilitates (Bayesian) estimation of the variance-covariance matrices as the 10 strategic variables are measured on different scales (see Tables 1, 2 and 3).

  3. We investigated the normal distributional assumptions for the strategic variables through examining kurtosis and skewness and found that for the vast majority of the strategic variables these are close to 0 and 3, respectively, what is to be expected for normality. Given the small sample size and the multidimensionality of the dependent variable, we find this satisfactory.

  4. We performed a similar time-trend analysis for the performance variables, but did not find any obvious patterns across time different from the aggregate results in Table 7. Detailed results may be obtained from the authors upon request.

  5. The MSC model selection criteria used before is developed for Hidden Markov Models (Smith et al. 2006), and we did not apply it to the three competing finite mixture models here.

  6. Readers interested in obtaining the classifications with full identities of all 63 banks are encouraged to contact the first author for such details.

  7. One reviewer suggested an alternative formulation in adding random effects only to the initial state distribution. Such extensions of the present methodology are worthwhile endeavors for future research.

References

  • Amel, D. F., & Rhoades, S. A. (1988). Strategic groups in banking. Review of Economics and Statistics, 70(4), 685–689.

    Google Scholar 

  • Amel, D. F., & Rhoades, S. A. (1992). The performance effects of strategic groups in banking. Antitrust Bulletin, 37(1), 171–186.

    Google Scholar 

  • Baird, I. S., Sudharsan, D., & Thomas, H. (1987). Addressing temporal change in strategic group analysis: a three-mode factor analysis approach. Journal of Management, 14(3), 425–440.

    Article  Google Scholar 

  • Barney, J. B., & Hoskisson, R. E. (1990). Strategic groups: untested assertions and research proposals. Managerial and Decision Economics, 11(3), 187–198.

    Article  Google Scholar 

  • Bharadwaj, A. S., Bharadwaj, S. G., & Konsynski, B. R. (1999). Information technology effects on firm performance as measured by Tobin’s Q. Management Science, 45(6), 1008–1024.

    Article  Google Scholar 

  • Blattberg, R. C., & Wisniewski, K. J. (1989). Price-induced patterns of competition. Marketing Science, 8, 291–309.

    Article  Google Scholar 

  • Bogner, W. C., Thomas, H., & McGee, J. (1996). A longitudinal study of the competitive positions and entry paths of european firms in the U.S. pharmaceutical market. Strategic Management Journal, 17(2), 85–107.

    Article  Google Scholar 

  • Brealey, R. A., & Myers, S. C. (1988). Principles of corporate finance. New York: McGraw-Hill.

    Google Scholar 

  • Caves, R. E., & Porter, M. E. (1978). From entry barriers to mobility barriers: conjectural decisions and contrived deterrence to new competition. Quarterly Journal of Economics, 91(2), 241–262.

    Article  Google Scholar 

  • Celeux, G. (Ed.). (1998). Bayesian inference for mixture: The label switching problem. Heidelberg: Physica.

    Google Scholar 

  • Chen, M.-J. (1996). Competitor analysis and interfirm rivalry: towards a theoretical integration. Academy of Management Review, 21(1), 100–134.

    Article  Google Scholar 

  • Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90, 1313–1321.

    Article  Google Scholar 

  • Chung, K. H., & Pruitt, S. W. (1994). A simple approximation of Tobin’s Q. Financial Management, 23, 70–74.

    Article  Google Scholar 

  • Cool, K. O., & Schendel, D. (1987). Strategic group formation and performance: the case of the U.S. pharmaceutical industry, 1963–1982. Management Science, 33(9), 1102–1124.

    Article  Google Scholar 

  • Cooper, L. G., & Inoue, A. (1996). Building market structures from consumer preferences. Journal of Marketing Research, 33(3), 293–306.

    Article  Google Scholar 

  • Day, G. S. (1992). Marketing’s contribution to the strategy dialogue. Journal of the Academy of Marketing Science, 20, 323–329.

    Article  Google Scholar 

  • Day, G. S., & Wensley, R. (1983). Marketing theory with a strategic orientation. Journal of Marketing, 47, 79–89.

    Article  Google Scholar 

  • Day, G. S., & Nedungadi, P. (1994). Managerial representations of competitive advantage. Journal of Marketing, 58, 31–44.

    Article  Google Scholar 

  • Day, G. S., Shocker, A. D., & Srivastava, R. K. (1979). Customer-oriented approaches to identifying product markets. Journal of Marketing, 43(4), 8–19.

    Article  Google Scholar 

  • Dayton, C. M., & MacReady, G. B. (1988). Concomitant variables latent class models. Journal of the American Statistical Association, 83(401), 173–178.

    Article  Google Scholar 

  • DeSarbo, W. S., & Jedidi, K. (1995). The spatial representation of heterogeneous consideration sets. Marketing Science, 14, 326–342.

    Article  Google Scholar 

  • DeSarbo, W. S., & Grewal, R. (2008). Hybrid strategic groups. Strategic Management Journal, 29(3), 293–317.

    Article  Google Scholar 

  • DeSarbo, W. S., Jedidi, K., Cool, K., & Schendel, D. (1991). Simultaneous multidimensional unfolding and cluster analysis: an investigation of strategic groups. Marketing Letters, 2, 129–146.

    Article  Google Scholar 

  • DeSarbo, W. S., Grewal, R., & Wind, J. (2006). Who competes with whom? A demand-based perspective for identifying and representing asymmetric competition. Strategic Management Journal, 27(2), 101–129.

    Article  Google Scholar 

  • DeSarbo, W. S., Grewal, R., & Wang, R. (2009). Dynamic strategic groups: spatial evolutionary paths. Strategic Management Journal, 30, 1420–1439.

    Article  Google Scholar 

  • DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48, 147–160.

    Article  Google Scholar 

  • Dranove, D., Peteraf, M. A., & Shanley, M. (1998). Do strategic groups exist: an economic framework for analysis. Strategic Management Journal, 19(11), 1029–1044.

    Article  Google Scholar 

  • Du, R. Y., & Kamakura, W. A. (2006). Household life cycles and lifestyles in the United States. Journal of Marketing Research, 43(1), 121–132.

    Article  Google Scholar 

  • Feka, V., Xouris, D., & Tsiotras, G. (1997). Mapping strategic groups: an international example. Journal of Business & Industrial Marketing, 12(1), 66–78.

    Article  Google Scholar 

  • Fiegenbaum, A., & Thomas, H. (1990). Strategic groups and performance: The U.S. insurance industry. Strategic Management Journal, 11(3), 197–215.

    Google Scholar 

  • Fiegenbaum, A., & Thomas, H. (1993). Industry and strategic group dynamics: competitive strategy in the insurance industry, 1970–84. Journal of Management Studies, 30(1), 69–97.

    Article  Google Scholar 

  • Fiegenbaum, A., Sudharshan, D., & Thomas, H. (1987). The concept of stable strategic time periods in strategic group research. Managerial and Decision Economics, 8, 139–148.

    Article  Google Scholar 

  • Fiegenbaum, A., Thomas, H., & Tang, M.-J. (2001). Linking hypercompetition and strategic group theories: strategic maneuvering in the Us insurance industry. Managerial and Decision Economics, 22(4,5), 265–279.

    Article  Google Scholar 

  • Flavian, C., & Polo, Y. (1999). Strategic groups analysis (Sga) as a tool for strategic marketing. European Journal of Marketing, 33(5/6), 548.

    Article  Google Scholar 

  • Fombrun, C. J., & Zajac, E. J. (1987). Structural and perceptual influences on intraindustry stratification. Academy of Management Journal, 30(1), 33–50.

    Article  Google Scholar 

  • Frazier, G. L., & Howell, R. D. (1983). Business definition and performance. Journal of Marketing, 47(2), 59–67.

    Article  Google Scholar 

  • Frühwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statistical Association, 96, 194–209.

    Article  Google Scholar 

  • Frühwirth-Schnatter, S. (2006). Finite mixture and markov switching models. New York: Springer.

    Google Scholar 

  • Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo: sotchastic simulation for Bayesian inference. New York: Chapman & Hall/CRC.

    Google Scholar 

  • Gelman, A. B., Carlin, J. S., Stern, H. S., & Rubin, D. B. (2000). Bayesian data analysis. Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1998). Markov Chain Monte Carlo in practice. New York: Chapman & Hall.

    Google Scholar 

  • Grewal, R., & Dharwadkar, R. (2002). The role of the institutional environment in marketing channels. Journal of Marketing, 66, 82–97.

    Article  Google Scholar 

  • Grewal, R., & Slotegraaf, R. (2007). Embeddedness of organizational capabilities. Decision Sciences, 38(3), 451–488.

    Article  Google Scholar 

  • Heckman, J. J. (1981). Heterogeneity and state dependence. In S. Rosen (Ed.), Studies in labor markets (Vol. 91–130). Chicago: U. of Chicago Press.

    Google Scholar 

  • Hunt, M. S. (1972). Competition in the major home appliances industry, 1960–70. Doctoral Dissertation, Harvard University.

  • Kamakura, W., & Russell, G. J. (1989). A probabilistic choice model of market segmentation and elasticity structure. Journal of Marketing Research, 26, 379–390.

    Article  Google Scholar 

  • Keane, M. P. (1997). Modeling heterogeneity and state dependence in consumer choice behavior. Journal of Business & Economic Statistics, 15(3), 310–327.

    Article  Google Scholar 

  • Ketchen, D. J., Thomas, J. B., & Snow, C. C. (1993). Organizational configurations and performance: a comparison. Academy of Management Journal, 36(6), 1278–1313.

    Article  Google Scholar 

  • Ketchen, D. J., Combs, J. G., Russell, C. J., Shook, C., Dean, M. A., Runge, J., et al. (1997). Organizational configurations and performance: a meta-analysis. Academy of Management Journal, 40(1), 223–240.

    Article  Google Scholar 

  • Kohli, A. K., & Jaworski, B. J. (1990). Market orientation: the construct, research propositions, and managerial implications. Journal of Marketing, 54, 1–18.

    Article  Google Scholar 

  • Kotler, P., & Keller, K. L. (2006). Marketing management (12th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Lee, R. P., & Grewal, R. (2004). Strategic responses to new technologies and their impact on firm performance. Journal of Marketing, 68, 157–171.

    Article  Google Scholar 

  • Lewis, P., & Thomas, H. (1990). The linkage between strategy, strategic groups, and performance in the U.K. retail grocery industry. Strategic Management Journal, 11(5), 385–397.

    Article  Google Scholar 

  • Liechty, J. C., Wedel, M., & Pieters, R. (2003). The representation of local and global exploration modes in eye movements through Bayesian Hidden Markov models. Psychometrika, 68(4), 519–542.

    Article  Google Scholar 

  • Madhavan, R., & Grover, R. (1998). From embedded knowledge to embodied knowledge: new product development as knowledge management. Journal of Marketing, 62, 1–12.

    Article  Google Scholar 

  • Mas-Ruiz, F. J. (1999). Dynamic analysis of competition in marketing: strategic groups in Spanish banking. International Journal of Bank Marketing, 17(5), 2333.

    Google Scholar 

  • Mascarenhas, B. (1989). Strategic group dynamics. Academy of Management Journal, 32(2), 333–352.

    Article  Google Scholar 

  • Mascarenhas, B., & Aaker, D. A. (1989). Mobility barriers and strategic groups. Strategic Management Journal, 10(5), 475–485.

    Article  Google Scholar 

  • McGee, J., & Thomas, H. (1986). Strategic groups: theory, research and taxonomy. Strategic Management Journal, 7(2), 141–160.

    Article  Google Scholar 

  • McNamara, G., Deephouse, D. L., & Luce, R. A. (2003). Competitive positioning within and across a strategic group structure: the performance of core, secondary, and solitary firms. Strategic Management Journal, 24(2), 161–181.

    Article  Google Scholar 

  • Mehra, A. (1996). Resource and market based determinants of performance in the U.S. Banking industry. Strategic Management Journal, 17(4), 307–322.

    Article  Google Scholar 

  • Moon, S., Kamakura, W. A., & Ledolter, J. (2007). Estimating promotion response when competitive promotions are unobservable. Journal of Marketing Research, 44(3), 503–515.

    Article  Google Scholar 

  • Nair, A., & Filer, L. (2003). Cointegration of firm strategies within groups: a long-run analysis of firm behavior in the Japanese Steel industry. Strategic Management Journal, 24(2), 145.

    Article  Google Scholar 

  • Narver, J. C., & Slater, S. F. (1990). The effect of a market orientation on business profitability. Journal of Marketing, 54(4), 20–35.

    Article  Google Scholar 

  • Nath, D., & Gruca, T. S. (1997). Convergence across alternative methods for forming strategic groups. Strategic Management Journal, 18(9), 745–760.

    Article  Google Scholar 

  • Netzer, O., Lattin, J. M., & Srinivasan, V. (2008). A hidden markov model of customer relationship dynamics. Marketing Science, 27(2), 185–204.

    Article  Google Scholar 

  • Oustapassidis, K. (1998). Performance of strategic groups in the greek dairy industry. European Journal of Marketing, 32(11/12), 962–975.

    Article  Google Scholar 

  • Peteraf, M., & Shanley, M. (1997). Getting to know you: a theory of strategic group identity. Strategic Management Journal, 18, 165–186.

    Article  Google Scholar 

  • Porac, J. F., & Thomas, H. (1994). Cognitive categorization and subjective rivalry among retailers in a small city. Journal of Applied Psychology, 79(1), 54–66.

    Article  Google Scholar 

  • Porac, J. F., Thomas, H., & Baden-Fuller, C. (1989). Competitive groups as cognitive communities: the case of Scottish knitwear manufacturers. Journal of Management Studies, 26(4), 397–416.

    Article  Google Scholar 

  • Porac, J. F., Thomas, H., Wilson, F., Paton, D., & Kanfer, A. (1995). Rivalry and the industry model of Scottish knitwear manufacturers. Administrative Science Quarterly, 40, 203–227.

    Article  Google Scholar 

  • Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and competitors. New York: Harper & Row.

    Google Scholar 

  • Poulson, C. S. (1990). Mixed Markov and latent Markov modelling applied to brand choice behaviour. International Journal of Research in Marketing, 7, 5–19.

    Google Scholar 

  • Reger, R. K., & Huff, A. S. (1993). Strategic groups: a cognitive perspective. Strategic Management Journal, 14(2), 103–123.

    Article  Google Scholar 

  • Reibstein, D. J., & Wittink, D. R. (2005). Competitive responsiveness. Marketing Science, 24(1), 8–11.

    Article  Google Scholar 

  • Rose, P. S. (1999). Commercial bank management (4th ed.). Boston: McGraw Hill.

    Google Scholar 

  • Ruiz, F. J. M. (1999). Dynamic analysis of competition in marketing: strategic groups in Spanish banking. International Journal of Bank Marketing, 17(5), 233–245.

    Article  Google Scholar 

  • Scott, S. L. (2002). Bayesian methods for hidden Markov models: recursive computing in the 21st century. Journal of the American Statistical Association, 97, 337–351.

    Google Scholar 

  • Serrano-Cinca, C. (1998). From financial information to strategic groups: a self-organizing neural network approach. Journal of Forecasting, 17(5,6), 415–428.

    Article  Google Scholar 

  • Short, J. C., Jr., Ketchen, D. J., Palmer, T. B., Tomas, G., & Hult, M. (2007). Firm, strategic group, and industry influences on performance. Strategic Management Journal, 28(2), 147–167.

    Article  Google Scholar 

  • Smith, K. G., Grimm, C. M., Wally, S., & Young, G. (1997). Strategic groups and rivalrous firm behavior: towards a reconciliation. Strategic Management Journal, 18(2), 149.

    Article  Google Scholar 

  • Smith, A., Naik, P. A., & Tsai, C.-L. (2006). Markov-switching model selection using Kullback-Leibler divergence. Journal of Econometrics, 134(2), 553–577.

    Article  Google Scholar 

  • Spender, J. C. (1989). Industry recipes: an inquiry into the nature and sources of managerial judgment. Oxford: Basil Blackwell.

    Google Scholar 

  • Srivastava, R. K., Alpert, M. I., & Shocker, A. D. (1984). A customer-oriented approach for determining market structures. Journal of Marketing, 48(2), 32–45.

    Article  Google Scholar 

  • Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components: an alternative to reversible jump methods. Annals of Statistics, 28, 40–74.

    Article  Google Scholar 

  • Sudharshan, D., Thomas, H., & Fiegenbaum, A. (1991). Assessing mobility barriers in dynamic strategic groups analysis. Journal of Management Studies, 28(5), 429–438.

    Article  Google Scholar 

  • Thomas, H., & Venkatraman, N. (1988). Research in strategic groups: progress and prognosis. Journal of Management Studies, 6(6), 537–556.

    Article  Google Scholar 

  • Tobin, J. (1969). A general equilibrium approach to monetary theory. Journal of Money, Credit, and Banking, 1, 15–29.

    Article  Google Scholar 

  • van der Lans, R., Pieters, R., & Wedel, M. (2008). Competitive brand salience. Marketing Science, Forthcoming.

  • Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual and methodological foundations. Boston: Kluwer.

    Google Scholar 

  • Weitz, B. A. (1985). Introduction to special issue on competition in marketing. Journal of Marketing Research, 22, 229–236.

    Article  Google Scholar 

  • Wernerfelt, B., & Montgomery, C. A. (1988). Tobin’s Q and the importance of focus on firm performance. American Economic Review, 78(1), 246–250.

    Google Scholar 

  • Wiehle, U., Diegelman, M., Deter, H., Schomig, P., & Rolf, M. (2005). 100 Us Gaap financial ratios. Cosmetics Publishing.

  • Wiehle, U., Diegelman, M., Deter, H., Schomig, P., & Rolf, M. (2006). 100 Ifrs financial ratios: Cosmetis Publishing.

  • Wiggins, R. R., & Ruefli, T. W. (1995). Necessary conditions for the predictive validity of strategic groups: analysis without reliance on clustering techniques. Academy of Management Journal, 38(6), 1635–1656.

    Article  Google Scholar 

  • Zuniga-Vicente, J. A., de la Fuente-Sabate, J. M., & Rodriguez-Puerta, J. (2004). A study of industry evolution in the face of major environmental disturbances: group and firm strategic behaviour of Spanish banks, 1983–1997. British Journal of Management, 15(3), 219–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne S. DeSarbo.

Appendix I

Appendix I

1.1 Derivation of the full conditional distributions for the HMM dynamic model

The technical model specifications and derivations for the MCMC algorithm for the hidden Markov model are presented here. For each bank i = 1,...,N, we observe p strategic variables for t = 1,...,T time periods, denoted by the p × 1 vector Y it . We assume that each firm belongs to one of K strategic groups in time period t, denoted by the (latent) variable S it . Given S it , we assume the strategic variables are independent and follow a p-variate normal distribution with mean \( {\mu_{{S_{it}}}} \) and variance \( {\Sigma_{{S_{it}}}} \). Furthermore, we assume that the group memberships change over time following a first-order Markov process, i.e., \( p\left( {\left. {{S_{it}}} \right|{S_{i\left( {t - 1} \right)}}} \right) = \prod\nolimits_{j = 1}^K {\prod\nolimits_{k = 1}^K {\xi_{jk}^{I\left\{ {{S_{it}} = k,{S_{i\left( {t - 1} \right)}} = j} \right\}}} } \). Then,

$$\begin{array}{*{20}c} {p{\left( {Y_{{i1}} ,Y_{{i2}} , \ldots ,Y_{{iT}} {\text{ $|$ }}S_{{i1}} ,S_{{i2}} , \ldots ,S_{{iT}} } \right)} = {\mathop \prod \limits_{t = 1}^T }p{\left( {Y_{{it}} |S_{{it}} } \right)}} \\ { = {\mathop \prod \limits_{t = 1}^T }{\left\{ {{\mathop \prod \limits_{k = 1}^K }N_{p} {\left( {Y_{{it}} {\text{ $|$ }}\mu _{k} ,{\text{ $ \Sigma $ }}_{k} } \right)}^{{I\{ S_{{it}} = k\} }} } \right\}}} \\ { = {\mathop \prod \limits_{k = 1}^K }{\left\{ {{\mathop \prod \limits_{t:S_{{it}} = k} }N_{p} {\left( {Y_{{it}} |\mu _{k} ,{\text{ $ \Sigma $ }}_{k} } \right)}} \right\}},} \\ \end{array} $$
(1)

where the last product is only taken across those time periods t for which S it  = k. Here \(N_{l} {\left( {.|\mu ,{\text{ $ \Sigma $ }}} \right)}\) denotes the density function of a p-variate normal distribution with mean μ and variance-covariance matrix Σ. The joint distribution of the group memberships is given by:

$$ \begin{array}{*{20}{c}} {p\left( {{S_{i0}},{S_{i1}},\ldots,{S_{iT}}} \right) = \left( {\prod\nolimits_{t = 1}^T {p\left( {\left. {{S_{it}}} \right|{S_{i\left( {t - 1} \right)}}} \right)} } \right) \times p\left( {{S_{i0}}} \right)} \hfill \\ { = \left( {\prod\nolimits_{t = 1}^T {\prod\nolimits_{j = 1}^K {\prod\nolimits_{k = 1}^K {\xi_{jk}^{I\left\{ {{S_{it}} = k,{S_{i\left( {t - 1} \right)}} = j} \right\}}} } } } \right) \times p\left( {{S_{i0}}} \right)} \hfill \\ { = \left( {\prod\nolimits_{j = 1}^K {\prod\nolimits_{k = 1}^K {\xi_{jk}^{{N_{jk}}\left( {{S_{i1,}}{S_{i2, \cdots, }}{S_{iT}} = j} \right)}} } } \right) \times p\left( {{S_{i0}}} \right)} \hfill \\ \end{array}, $$
(2)

where N jk (S i1,S i2,..., S iT) counts the number of times that firm i switches from strategic group j to k across all T time periods. The complete data likelihood contribution:

$$ p\left( {{Y_i},{S_i}} \right) = p\left( {\left. {{Y_i}} \right|{S_i}} \right) \times p\left( {{S_i}} \right) $$
(3)

for firm t is given by the product of expressions (1) and (2), where Y i  = (Y i1, Y i2,..., Y iT ) and S i  = (S i1, S i2,..., S iT ). The full-sample, complete-data likelihood function is computed as the product of expression (3) across i = 1,...,N.

In the following, we denote the vector of all unknown parameters by θ. We specify independent normal priors for the groups mean μ k , k = 1,...,K, with mean \( \bar{\mu } = 0 \) and variance \( \Sigma = 25 \times {I_p} \). For each Σ k , k = 1,...,K, we specify an inverse Wishart distribution as the prior distribution with parameters \( {r_0} = p + 2 \) and S 0 = I p . Each row of the matrix of transition probabilities \( \xi = \left\{ {{\xi_{jk}}} \right\} \) is assumed to be independent a priori following a Dirichlet distribution with parameters \( \left( {{M_{j1}},{M_{j2}}, \ldots, {M_{jk}}} \right) = \left( {1,1,...,1} \right) \), for j = 1,...K. We assume the process S it starts at t = 0 from an arbitrary discrete distribution with probabilities (η 1,...,η K ). We treat the parameters η K as unknown and specify a Dirichlet prior distribution for it with parameters \( \left( {{N_{01}},{N_{02}}, \ldots {N_{0K}}} \right) = \left( {1,1, \ldots, 1} \right) \). Hence, the Markov chain is not assumed to be stationary a priori. Furthermore, we are not left to specify an ad-hoc distribution for the initial conditions, which becomes more important when T is relatively small. Hence, for each firm i, we have T + 1 latent variables S it .

The posterior distribution is proportional to the product of the full-sample, complete-data likelihood function and the priors. This posterior is not available in closed form and we use MCMC sampling through the full conditional distributions to simulate the marginal posterior distributions of the model parameters. The full conditional distributions are obtained from the product of the likelihood and priors (e.g., Gilks et al. 1998).

Full conditional distribution for μ k

The full conditional distribution for μ k is obtained from a product of two normal densities (for notational simplicity, we only present the kernels here), and is proportional to:

$$ \exp \left\{ { - \frac{1}{2}\sum\nolimits_{\left( {i,t:{S_{it}} = k} \right)} {\left( {{Y_{it}} - {\mu_k}} \right)\prime \Sigma_k^{ - 1}\left( {{Y_{it}} - {\mu_k}} \right)} } \right\} \times \exp \left\{ { - \frac{1}{2}\left( {{\mu_k} - \bar{\mu }} \right)\prime \Sigma_k^{ - 1}\left( {{\mu_k} - \bar{\mu }} \right)} \right\}. $$
(4)

Both quadratic forms in the exponent terms can be completed and combined as follows:

$$ \mu_k^\prime \left( {{\Sigma^{ - 1}} + {n_k}\Sigma_k^{ - 1}} \right){\mu_k} - \mu_k^\prime \left( {{\Sigma^{ - 1}}\bar{\mu } + \Sigma_k^{ - 1}{\Sigma_{\left\{ {i,t:{S_{it}} = k} \right\}}}{Y_{it}}} \right) - \left( {{\Sigma_{\left\{ {i,t:{S_{it}} = k} \right\}}}{Y_{it}}\prime \Sigma_k^{ - 1} + \bar{\mu }\prime {\Sigma^{ - 1}}} \right){\mu_k}, $$
(5)

where n k is the number of observations across i and t that are in strategic group k. From expression (5), it follows that the full conditional for μ k is a p-variate normal distribution with mean \( {{\text{V}}^{ - {1}}}\left( {{\Sigma^{ - {1}}}\bar{\mu } + \Sigma_k^{ - 1}{\Sigma_{\left\{ {i,t:{S_{it}} = k} \right\}}}{Y_{it}}} \right) \) and variance V −1, with \( V = {\Sigma^{ - 1}} + {n_k}\Sigma_k^{^{ - 1}} \).

Full conditional distribution for Σ k

The full conditional for Σ k is derived from the product of a normal density from the likelihood and the inverted Wishart prior, i.e.,:

$$ \left( {{{\prod\nolimits_{i,t:{S_{it}} = k} {\left| {{\Sigma_k}} \right|} }^{ - \frac{1}{2}}}\exp \left\{ { - \frac{1}{2}\left( {{Y_{it}} - {\mu_k}} \right)\prime \sum\nolimits_k^{ - 1} {\left( {{Y_{it}} - {\mu_k}} \right)} } \right\}} \right) \times {\left| {{\Sigma_k}} \right|^{ - \frac{{{r_0} + p + 1}}{2}}}\exp \left\{ { - \frac{1}{2}tr\left( {{S_0}\Sigma_k^{ - 1}} \right)} \right\} = {\left| {{\Sigma_k}} \right|^{ - \frac{{{n_k}}}{2}}}\exp \left\{ { - \frac{1}{2}tr\left( {\sum\nolimits_{\left( {i,t:{S_{it}} = k} \right)} {\left( {{Y_{it}} - {\mu_k}} \right)\left( {{Y_{it}} - {\mu_k}} \right)\prime \Sigma_k^{ - 1}} } \right)} \right\} \times {\left| {{\Sigma_k}} \right|^{ - \frac{{{r_0} + p + 1}}{2}}}\exp \left\{ { - \frac{1}{2}tr\left( {{S_0}\Sigma_k^{ - 1}} \right)} \right\}. $$
(6)

From the previous equation, it follows that the full conditional distribution for Σ k is an inverted Wishart distribution with parameters \( \sum\nolimits_{\left( {i,t:{S_{it}} = k} \right)} {\left( {{Y_{it}} - {\mu_k}} \right)\left( {{Y_{it}} - {\mu_k}} \right)} \prime + {S_0} \) and r 0 + n k .

Full conditional distribution for ξ

Each row of the matrix ξ may be sampled independently. The full conditional for each row \( \left( {{\xi_{j1}},{\xi_{j2}}, \ldots, {\xi_{jK}}} \right) \), for j = 1,...,K, is derived from the product of the full-sample likelihood contribution of the latent group memberships \( {S_1},{S_2}, \ldots, {S_N} \), where \( {S_i} = \left( {{S_{i1}},{S_{i2}}, \ldots, {S_{iT}}} \right) \), and the Dirichlet prior for \( {\xi_{j1}},{\xi_{j2}}, \ldots, {\xi_{jK}} \). Let \( {S_i} = \left( {{S_{i1}},{S_{i2}}, \ldots, {S_{iT}}} \right) \) and \( S = \left( {{S_1},{S_2}, \ldots, {S_N}} \right) \), it follows that the full conditional is proportional to:

$$ \left\{ {\prod\nolimits_{t = 1}^N {\left( {\prod\nolimits_{k = 1}^K {\xi_{jk}^{{N_{jk}}\left( {{S_i}} \right)}} } \right)} } \right\} \times \left( {\prod\nolimits_{k = 1}^K {\xi_{jk}^{{M_{jk}}}} } \right) = \left( {\prod\nolimits_{k = 1}^K {\xi_{jk}^{{N_{jk}}(S)}} } \right) \times \left( {\prod\nolimits_{k = 1}^K {\xi_{jk}^{{M_{jk}}}} } \right), $$
(7)

where N jk (S) counts the number of transitions from states j to k across all firms i and time periods t. Hence, it follows that the full conditional distribution for the j-th row of ξ is a Dirichlet distribution with parameters \( {N_{jk}}(S) + {M_{jk}} \), k=1,...,K.

Full conditional distribution for (η 1,η 2,...,η K )

Using similar logic as for deriving the full conditional distribution for the j-th row of ξ, it follows that the full conditional distribution for the group sizes at t = 0 is also Dirichlet with parameters (N 0k  + M 0k ), k=1,...,K, where N 0k is the number of banks i in group k at time t = 0.

Data augmentation for the hidden states

The paths of the hidden states (S 1,S 2,...,S N ) are updated using a multi-move sampler (Scott 2002; Frühwirth-Schnatter 2006). For each bank, we sample S i from the full conditional distribution:

$$ p\left( {\left. {{S_t}} \right|{Y_i},\theta } \right) = \left( {\prod\nolimits_{t = 0}^{T - 1} {p\left( {\left. {{S_{it}}} \right|{S_{i\left( {t + 1} \right)}};{Y_i},\theta } \right)} } \right)p\left( {\left. {{S_{iT}}} \right|{Y_i},\theta } \right), $$
(8)

where:

$$ p\left( {\left. {S_{it} } \right|S_{i\left( {t + 1} \right)} ;Y_i ,\theta } \right) = \frac{{p\left( {\left. {S_{i\left( {t + 1} \right)} } \right|S_{it} ;Y_i ,\theta } \right)p\left( {\left. {S_{it} } \right|Y_i ,\theta } \right)}}{{p\left( {\left. {S_{i\left( {t + 1} \right)} } \right|Y_i ,\theta } \right)}} \propto \xi _{S_{it} ,S_{i\left( {t + 1} \right)} } p\left( {\left. {S_{it} } \right|Y_{it} ,Y_{i2} , \ldots Y_{it} ,\theta } \right). $$
(9)

The probabilities \( p\left( {\left. {{S_{it}}} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{it}},\theta } \right) \) are the filtered state probabilities. Hence, it follows from (8) that a path S i may be obtained recursively by first sampling a value \( {\tilde{S}_{iT}} \) from the filtered state probability distribution \( p\left( {\left. {{S_{iT}}} \right|{Y_i},\theta } \right) \), and subsequently, for \( t = T - 1,T - 2, \ldots, 0 \), a value for S it is sampled from the conditional distribution \( p\left( {\left. {{S_{it}}} \right|{{\tilde{S}}_{i\left( {t + 1} \right)}};{Y_i},\theta } \right) \) in (9). The filtered state probabilities are sampled using a forward sampling algorithm (e.g., Frühwirth-Schnatter 2006) from:

$$ p\left( {\left. {{S_{it}}} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{it}},\theta } \right) \propto p\left( {\left. {{Y_{it}}} \right|{S_{it}},{Y_{i1}},{Y_{i2}}, \ldots, {Y_{t\left( {t - 1} \right)}},\theta } \right)p\left( {\left. {{S_{it}}} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{t\left( {t - 1} \right)}},\theta } \right), $$
(10)

where \( p\left( {\left. {{Y_{it}}} \right|{S_{it}},{Y_{i1}},{Y_{i2}}, \ldots, {Y_{i\left( {t - 1} \right)}},\theta } \right) = p\left( {\left. {{Y_{it}}} \right|{S_{it}},\theta } \right) \) is the p-variate normal density with mean \( {\mu_{{S_{it}}}} \) and variance \( {\Sigma_{{S_{it}}}} \). The one-step ahead probabilities \( p\left( {\left. {{S_{it}}} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{i\left( {t - 1} \right)}},\theta } \right) \) are obtained from:

$$ \begin{array}{*{20}{c}} {p\left( {\left. {{S_{it}}} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{i\left( {t - 1} \right)}},\theta } \right) = \sum\nolimits_{k = 1}^K {p\left( {\left. {{S_{it}},{S_{it\left( {t - 1} \right)}} = k} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{i\left( {t - 1} \right)}},\theta } \right)} } \\ { = \sum\nolimits_{k = 1}^K {\xi k{S_{it}}p\left( {\left. {{S_{i\left( {t - 1} \right)}} = k} \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{i\left( {t - 1} \right)}},\theta } \right).} } \\ \end{array} $$
(11)

Hence, the filtered state probabilities can be computed recursively for t = 1,...,T from expressions (10) and (11). For t = 1 we set \( p\left( {{S_{i\left( {t - 1} \right)}} = \left. k \right|{Y_{i1}},{Y_{i2}}, \ldots, {Y_{i\left( {t - 1} \right)}},\theta } \right) = {\eta_k} \), for k = 1,...,K, in expression (11).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbes, P., Grewal, R. & DeSarbo, W.S. Modeling strategic group dynamics: A hidden Markov approach. Quant Mark Econ 8, 241–274 (2010). https://doi.org/10.1007/s11129-010-9081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11129-010-9081-0

Keywords

JEL Classifications

Navigation