Skip to main content
Log in

The state-dependent M / G / 1 queue with orbit

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a state-dependent single-server queue with orbit. This is a versatile model for the study of service systems, where the server needs a non-negligible time to retrieve waiting customers every time he completes a service. This situation arises typically when the customers are not physically present at a system, but they have a remote access to it, as in a call center station, a communication node, etc. We introduce a probabilistic approach for the performance evaluation of this queueing system, that we refer to as the queueing and Markov chain decomposition approach. Moreover, we discuss the applicability of this approach for the performance evaluation of other non-Markovian service systems with state dependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouee-Mehrizi, H., Baron, O.: State-dependent \(M/G/1\) queueing systems. Queueing Syst. 82, 121–148 (2016)

    Article  Google Scholar 

  2. Abouee-Mehrizi, H., Baron, O., Berman, O.: Exact analysis of capacitated two-echelon inventory systems with priorities. Manuf. Serv. Oper. Manag. 16, 561–577 (2014)

    Article  Google Scholar 

  3. Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems. A Computational Approach. Springer, Berlin (2008)

    Book  Google Scholar 

  4. Baron, O., Economou, A., Manou, A.: Equilibrium customer strategies for joining the \(M/G/1\) queue with orbit. Working paper (2017)

  5. Bitran, G.R., Tirupati, D.: Multiproduct queueing networks with deterministic routing: decomposition approach and the notion of interference. Manage. Sci. 34, 75–100 (1988)

    Article  Google Scholar 

  6. Caldentey, R.: Approximations for multi-class departure processes. Queueing Syst. 38, 205–212 (2001)

    Article  Google Scholar 

  7. Choi, B.D., Park, K.K., Pearce, C.E.M.: An \(M/M/1\) retrial queue with control policy and general retrial times. Queueing Syst. 14, 275–292 (1993)

    Article  Google Scholar 

  8. Cox, D.R.: A use of complex probabilities in the theory of stochastic processes. Proc. Camb. Philos. Soc. 51, 313–319 (1955)

    Article  Google Scholar 

  9. Doroudi, S., Fralix, B., Harchol-Balter, M.: Clearing analysis of phases: exact limiting probabilities for skip-free, unidirectional, quasi-birth–death processes. Stoch. Syst. 6, 420–458 (2016)

    Article  Google Scholar 

  10. Eager, D.L., Lazowska, E.D., Zahorjan, J.: Adaptive load sharing in homogeneous distributed systems. IEEE Trans. Softw. Eng. 12, 662–675 (1986)

    Article  Google Scholar 

  11. Economou, A., Manou, A. (2015) A probabilistic approach for the analysis of the \(M_n/G/1\) queue. Ann. Oper. Res. https://doi.org/10.1007/s10479-015-1943-0

  12. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)

    Book  Google Scholar 

  13. Fayolle, G.: A simple telephone exchange with delayed feedbacks. In: Boxma, O.J., Cohen, J.W., Tijms, H.C. (eds.) Teletraffic Analysis and Computer Performance Evaluation, pp. 245–253. Elsevier, Amsterdam (1986)

    Google Scholar 

  14. Gomez-Corral, A.: Stochastic analysis of a single server retrial queue with general retrial times. Naval Res. Logist. 46, 561–581 (1999)

    Article  Google Scholar 

  15. Kerner, Y.: The conditional distribution of the residual service time in the \(M_n/G/1\) queue. Stoch. Models 24, 364–375 (2008)

    Article  Google Scholar 

  16. Lazowska, E.D., Zahorjan, J., Cheriton, D.R., Zwaencpocl, W.: File access performance of diskless workstations. Department of Computer Science, University of Washington, Seattle, Technical Report 84-06-01 (1984)

  17. Manou, A., Economou, A., Karaesmen, F.: Strategic customers in a transportation station: when is it optimal to wait? Oper. Res. 62, 910–925 (2014)

    Article  Google Scholar 

  18. Martin, M., Artalejo, J.R.: Analysis of an \(M/G/1\) queue with two types of impatient units. Adv. Appl. Prob. 27, 840–861 (1995)

    Article  Google Scholar 

  19. Oz, B., Adan, I., Haviv, M.: A rate balance principle and its application to queueing models. Queueing Syst. 87, 95–111 (2017)

    Article  Google Scholar 

  20. Oz, B., Adan, I., Haviv, M.: The conditional distribution of the remaining service or vacation time in the \(M_n/G_n/1\) queue with vacations. Preprint (2015)

  21. Oz, B.: Strategic behavior in queues. Ph.D. Thesis, The Hebrew University of Jerusalem (2016)

  22. Phung-Duc, T., Rogiest, W., Wittevrongel, S.: Single server retrial queues with speed scaling: analysis and performance evaluation. J. Ind. Manag. Optim. (2017). https://doi.org/10.3934/jimo.2017025

    Google Scholar 

  23. Phung-Duc, T.: Server farms with batch arrival and staggered setup. Proceedings of the 15th Symposium on Information and Communication Technology (SoICT), Hanoi, December 4–5, 2014, pp. 240–247 (2014)

  24. Phung-Duc, T.: Exact solutions for \(M/M/c/\text{ Setup }\) queues. Telecommun. Syst. 64, 309–324 (2017a)

    Article  Google Scholar 

  25. Phung-Duc, T.: Single server retrial queues with setup time. J. Ind. Manag. Optim. 13, 1329–1345 (2017b)

    Article  Google Scholar 

  26. Reiser, M., Kobayashi, H.: Accuracy of diffusion approximation for some queueing systems. IBM J. Res. Dev. 18, 110–124 (1974)

    Article  Google Scholar 

  27. van Doorn, E.A., Regterschot, D.J.K.: Conditional PASTA. Oper. Res. Lett. 7, 229–232 (1988)

    Article  Google Scholar 

  28. Wang, J., Baron, O., Scheller-Wolf, A.: \(M/M/c\) queue with two priority classes. Oper. Res. 63, 733–749 (2015)

    Article  Google Scholar 

  29. Yajima, M., Phung-Duc, T.: Batch arrival single-server queue with variable service speed and setup time. Queueing Syst. 86, 241–260 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the associate editor, and two anonymous reviewers for their valuable comments that greatly improved the paper. We thank Professor Mor Harchol-Balter of Carnegie Mellon University for pointing us to the application of our model for the analysis of load sharing algorithms. Professor Baron’s work on this research was supported by a grant from the Natural Science and Engineering Research Council of Canada. Athanasia Manou was supported by AXA Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Economou.

Appendix

Appendix

In this Appendix, we first provide several technical analytic proofs of various results of the paper. We then use the supplementary variable method to prove the main results in the paper. The proofs are quite tedious but straightforward, depending mainly on algebraic manipulations, and they are given for completeness.

1.1 Technical analytic proofs

Corollary 5.2—Proof

In light of (5.17), (5.19) yields

$$\begin{aligned} \mu _{01}=\lambda _{10} p_{10}. \end{aligned}$$
(7.1)

Now, by substituting \(\mu _{1j}\) from the RHS of (5.18) into (5.20), canceling \(\lambda _{0j} p_{0j}\) yields \( \lambda _{1,j-1}p_{1,j-1}+\mu _{0,j+1}=\mu _{0j}+\lambda _{1j} p_{1j}\), for \( j\ge 1\), which can be written as

$$\begin{aligned} \mu _{0,j+1}-\mu _{0j}=\lambda _{1j} p_{1j} -\lambda _{1,j-1} p_{1,j-1},\quad j\ge 1. \end{aligned}$$
(7.2)

Summing (7.2) for consecutive values of j and canceling equal terms yields

$$\begin{aligned} \mu _{0,j+1}-\mu _{01}=\lambda _{1j}p_{1j}-\lambda _{10}p_{10},\quad j\ge 1, \end{aligned}$$

which reduces to \(\mu _{0,j+1}=\lambda _{1j}p_{1j}\), for \(j\ge 1\), using (7.1). \(\square \)

Lemma 5.2—Proof

We have

$$\begin{aligned} E[\min (X,T_{\lambda })]= & {} \int _{0}^{\infty } \Pr [\min (X,T_{\lambda })>x] \mathrm{d}x=\int _{0}^{\infty } \Pr [X>x]\mathrm{e}^{-\lambda x} \mathrm{d}x \\= & {} \int _{0}^{\infty } \int _{x}^{\infty } \mathrm{d}F(y) \mathrm{e}^{-\lambda x}\mathrm{d}x = \int _{0}^{\infty } \int _{0}^y \mathrm{e}^{-\lambda x} \mathrm{d}x \mathrm{d}F(y) \\= & {} \int _{0}^{\infty } \frac{1-\mathrm{e}^{-\lambda y}}{\lambda } \mathrm{d}F(y)=\frac{1-\tilde{F} (\lambda )}{\lambda }. \end{aligned}$$

\(\square \)

Theorem 5.1—Proof

We first establish the initial conditions. The initial condition (5.40) is simply (5.21). By (5.40) and (5.34) we have that

$$\begin{aligned} \lambda _{00}p_{00}= & {} \lambda _{00}p_{00}\tilde{B}_{10}(\lambda _{10})+\mu _{01}\tilde{B}_{00}(\lambda _{10}), \end{aligned}$$

which yields (5.41). By (5.33) for \(j=1\) we have

$$\begin{aligned} \mu _{01}=\mu _{11}\tilde{A}_{1}(\lambda _{01}), \end{aligned}$$

which, in combination with (5.41), yields (5.42). Also, (5.43) is identical to (5.8).

Now, solving (5.35) for \(\mu _{0,j+1}\) yields (5.36). Indeed, we have that

$$\begin{aligned} \mu _{0,j+1}= & {} \frac{\mu _{1j}-\lambda _{0j}p_{0j}\tilde{B}_{1j}(\lambda _{1j})-\lambda _{1,j-1}p_{1,j-1}\tilde{S}_{1,j-1}(\lambda _{1j})}{\tilde{B} _{0j}(\lambda _{1j})} \\= & {} \frac{\mu _{1j}-(\mu _{1j}-\mu _{0j})\tilde{B}_{1j}(\lambda _{1j})-\mu _{0j} \tilde{S}_{1,j-1}(\lambda _{1j})}{\tilde{B}_{0j}(\lambda _{1j})} \\= & {} \mu _{1j}\frac{1-\tilde{B}_{1j}(\lambda _{1j})}{\tilde{B}_{0j}(\lambda _{1j})}+\mu _{0j}\frac{\tilde{B}_{1j}(\lambda _{1j})-\tilde{S} _{1,j-1}(\lambda _{1j})}{\tilde{B}_{0j}(\lambda _{1j})},\quad j\ge 1, \end{aligned}$$

where in the second equality we used equations (5.22) and (5.23). Now, (5.37) immediately follows from (5.33) for \(j\ge 1\) and (5.38) is identical to (5.9). Substituting (5.1) into (5.13) and using (5.22) yields

$$\begin{aligned} a_{j}= & {} \frac{\mu _{0,j+1}\left( 1-\tilde{B}_{j}(\lambda _{1j})\right) +\lambda _{0j}p_{0j}\left( 1-\tilde{B}_{j}(\lambda _{1j})\right) }{\lambda _{1j}p_{1j}} \\= & {} \frac{\mu _{0,j+1}\left( 1-\tilde{B}_{j}(\lambda _{1j})\right) +(\mu _{1j}-\mu _{0j})\left( 1-\tilde{B}_{j}(\lambda _{1j})\right) }{ \mu _{0,j+1}} \\= & {} \left( 1-\tilde{B}_{j}(\lambda _{1j})\right) \left( 1+\frac{ \mu _{1j}-\mu _{0j}}{\mu _{0,j+1}}\right) , \end{aligned}$$

which gives the first line in (5.39). The second line follows using (5.1), (5.2) and (5.22). Indeed, we have

$$\begin{aligned} a_{j}= & {} \left( 1-\frac{\mu _{0,j+1} \tilde{B}_{0j}\left( \lambda _{1j}\right) +\left( \mu _{1j}-\mu _{0j}\right) \tilde{B}_{1j}\left( \lambda _{1j}\right) }{ \mu _{0,j+1} +\mu _{1j}-\mu _{0j}}\right) \frac{\mu _{0,j+1}+\mu _{1j}-\mu _{0j}}{ \mu _{0,j+1}} \\= & {} \left( \frac{\mu _{0,j+1} +\mu _{1j}-\mu _{0j}-\mu _{0,j+1} \tilde{B} _{0j}\left( \lambda _{1j}\right) -\left( \mu _{1j}-\mu _{0j}\right) \tilde{B} _{1j}\left( \lambda _{1j}\right) }{\mu _{0,j+1} +\mu _{1j}-\mu _{0j}}\right) \\&\times \frac{\mu _{0,j+1}+\mu _{1j}-\mu _{0j}}{\mu _{0,j+1}} \\= & {} \frac{\mu _{0,j+1} \left( 1-\tilde{B}_{0j}\left( \lambda _{1j}\right) \right) +\left( \mu _{1j}-\mu _{0j}\right) \left( 1-\tilde{B} _{1j}\left( \lambda _{1j}\right) \right) }{\mu _{0,j+1}}. \end{aligned}$$

Finally, (5.44) is identical to (5.7).\(\square \)

Theorem 5.2—Proof

Using (5.22) and (5.23), we deduce that

$$\begin{aligned} \mu _{1j}=\lambda _{0j}p_{0j}+\mu _{0j}=\lambda _{0j}p_{0j}+\lambda _{1,j-1}p_{1,j-1},\quad j\ge 1. \end{aligned}$$
(7.3)

Equations (5.23) and (5.33) yield

$$\begin{aligned} \lambda _{1,j-1}p_{1,j-1}=\mu _{0j}=\mu _{1j}\tilde{A}_{j}(\lambda _{0j}),\quad j\ge 1, \end{aligned}$$

so, using (7.3), we conclude that

$$\begin{aligned} \lambda _{1,j-1}p_{1,j-1}=\left( \lambda _{0j}p_{0j}+\lambda _{1,j-1}p_{1,j-1}\right) \tilde{A}_{j}(\lambda _{0j}),\quad j\ge 1. \end{aligned}$$

Solving for \(p_{0j}\) yields (5.45). Next, equations (5.34) and (5.21) imply that

$$\begin{aligned} \lambda _{00}p_{00}= & {} \mu _{01}\tilde{B}_{00}\left( \lambda _{10}\right) +\lambda _{00}p_{00}\tilde{B}_{10}\left( \lambda _{10}\right) =\nu _{10} \tilde{B}_{0}\left( \lambda _{10}\right) \\= & {} \left( \lambda _{10}p_{10}+\lambda _{00}p_{00}\right) \tilde{B}_{0}\left( \lambda _{10}\right) , \end{aligned}$$

where the second and third equality follow by (5.2) and (5.24), respectively. Noting that \(\mu _{01}=\lambda _{10}p_{10}\) from (5.23) and solving for \(p_{10}\) yields both expressions in (5.47).

Finally, substituting (7.3) and (5.23) into the left-hand side and right-hand side of (5.35), respectively, we get

$$\begin{aligned} \lambda _{0j}p_{0j}+\lambda _{1,j-1}p_{1,j-1}= & {} \lambda _{1j}p_{1j}\tilde{B} _{0j}(\lambda _{1j})+\lambda _{0j}p_{0j}\tilde{B}_{1j}(\lambda _{1j})\nonumber \\&+\lambda _{1,j-1}p_{1,j-1}\tilde{S}_{1,j-1}(\lambda _{1j}) \nonumber \\= & {} \nu _{1j}\tilde{B}_{j}\left( \lambda _{1j}\right) +\lambda _{1,j-1}p_{1,j-1}\tilde{S}_{1,j-1}\left( \lambda _{1j}\right) ,\quad j\ge 1.\nonumber \\ \end{aligned}$$
(7.4)

Rearranging terms in the first equality yields

$$\begin{aligned}&\lambda _{1j}p_{1j}\tilde{B}_{0j}(\lambda _{1j})\\&\quad =\lambda _{0j}p_{0j}\left( 1- \tilde{B}_{1j}\left( \lambda _{1j}\right) \right) +\lambda _{1,j-1}p_{1,j-1}\left( 1-\tilde{S}_{1,j-1}\left( \lambda _{1j}\right) \right) ,\quad j\ge 1. \end{aligned}$$

Solving for \(p_{1j}\) yields the first line in (5.46). Substituting (5.24) in the second line of (7.4) implies that

$$\begin{aligned}&\lambda _{0j}p_{0j}+\lambda _{1,j-1}p_{1,j-1}\nonumber \\&\quad =\left( \lambda _{1j}p_{1j}+\lambda _{0j}p_{0j}\right) \tilde{B}_{j}\left( \lambda _{1j}\right) +\lambda _{j-1}p_{1,j-1}\tilde{S}_{1,j-1}\left( \lambda _{1j}\right) ,\quad j\ge 1. \end{aligned}$$

Solving for \(p_{1j}\) yields the second line in (5.46). \(\square \)

Corollary 5.4—Proof

We prove the result by induction. First, note that (5.40)–(5.42) imply that \(\mu _{10}, \mu _{01}\) and \(\mu _{11}\) are linear in \(p_{00}\). Also, (5.44) shows that LSTs \(\tilde{S}_{0j}(s)\) are independent of \(p_{00}\), for \(j\ge 1\). Since \(\mu _{01}\) is linear in \(p_{00}\), (5.1) for \(j=1\) implies that \(\nu _{10}\) is linear in \(p_{00}\). Moreover, since \(\nu _{10}\) and \(\mu _{01}\) are linear in \(p_{00}\), (5.2) implies that \(\tilde{B}_{0}(s)\) is independent of \(p_{00}\) and consequently \(\tilde{S}_{10}(s)\) is independent of \(p_{00}\). From formulas (5.45) for \(j=1\) and (5.47), we have that \(p_{01}\) and \(p_{10}\) are linear in \(p_{00}\).

We make the induction hypothesis: Assume that the rates \(\mu _{01}, \mu _{02},\ldots , \mu _{0j}\), the rates \(\mu _{10}, \mu _{11},\ldots , \mu _{1j}\), the rates \(\nu _{10}, \nu _{11},\ldots , \nu _{1,j-1}\), the probabilities \(p_{10}, p_{11},\ldots , p_{1,j-1}\), and the probabilities \(p_{01}, p_{02},\ldots , p_{0j}\) are linear in \(p_{00}\). Moreover, assume that the LSTs \(\tilde{B}_{0}(s), \tilde{B}_{1}(s),\ldots , \tilde{B}_{j-1}(s)\) and \(\tilde{S}_{10}(s), \tilde{S}_{11}(s),\ldots , \tilde{S}_{1,j-1}(s)\) are independent of \(p_{00}\).

We will prove the following: (i) \(\mu _{0,j+1}\) is linear in \(p_{00}\), (ii) \(\mu _{1,j+1}\) is linear in \(p_{00}\), (iii) \(\nu _{1j}\) is linear in \(p_{00}\), (iv) \(\tilde{B}_{j}(s)\) is independent of \(p_{00}\), (v) \(\tilde{S}_{1j}(s)\) is independent of \(p_{00}\), (vi) \(p_{1j}\) is linear in \(p_{00}\) and (vii) \(p_{0,j+1}\) is linear in \(p_{00}\).

  1. (i)

    Since \(\mu _{0j}\) and \(\mu _{1j}\) are linear in \(p_{00}\) and \(\tilde{S}_{1,j-1}(s)\) is independent of \(p_{00}\), (5.36) implies that \(\mu _{0,j+1}\) is linear in \(p_{00}\).

  2. (ii)

    Using that \(\mu _{0,j+1}\) is linear in \(p_{00}\), (5.37) gives that \(\mu _{1,j+1}\) is linear in \(p_{00}\).

  3. (iii)

    Since \(\mu _{0,j+1}\) and \(p_{0j}\) are linear in \(p_{00}\), (5.1) implies that \(\nu _{1j}\) is linear in \(p_{00}\).

  4. (iv)

    Since \(\mu _{0,j+1}, p_{0j}\) and \(\nu _{1j}\) are linear in \(p_{00}\), (5.2) implies that \(\tilde{B}_{j}(s)\) is independent of \(p_{00}\).

  5. (v)

    Using that \(\mu _{1j}, \mu _{0j}\), and \(\mu _{0,j+1}\) are linear in \(p_{00}\), (5.39) gives that \(a_j\) is independent of \(p_{00}\). Then, using that \(a_j, \tilde{S}_{1,j-1}(s)\) and \(\tilde{B}_{j}(s)\) are independent of \(p_{00}\), (5.38) implies that \(\tilde{S}_{1j}(s)\) is independent of \(p_{00}\).

  6. (vi)

    Since \(p_{0j}\) and \(p_{1,j-1}\) are linear in \(p_{00}\) and \(\tilde{S}_{1,j-1}(s)\) is independent of \(p_{00}\), (5.46) shows that \(p_{1j}\) is linear in \(p_{00}\).

  7. (vii)

    (5.45), using that \(p_{1j}\) is linear in \(p_{00}\), yields that \(p_{0,j+1}\) is linear in \(p_{00}\). \(\square \)

Theorem 5.3—Proof

Using (5.46) in combination with (5.45) gives

$$\begin{aligned} p_{1j}=\frac{\lambda _{1,j-1}\left[ \left( 1{-}\tilde{B}_{1j}(\lambda _{1j})\right) \left( 1-\tilde{A}_{j}(\lambda _{0j})\right) {+}\tilde{A}_{j}(\lambda _{0j}) \left( 1{-}\tilde{S}_{1,j-1}(\lambda _{1j})\right) \right] }{\lambda _{1j}\tilde{B}_{0j}(\lambda _{1j})\tilde{A}_{j}(\lambda _{0j})}p_{1,j-1}. \end{aligned}$$

Thus,

$$\begin{aligned} p_{1j}=k_jp_{1,j-1},\quad j\ge 1. \end{aligned}$$
(7.5)

Also, (5.45) and (5.47) can be written as

$$\begin{aligned} p_{0j}=l_jp_{1,j-1},\quad j\ge 1, \end{aligned}$$
(7.6)

and

$$\begin{aligned} p_{10}=qp_{00}, \end{aligned}$$
(7.7)

respectively. Then,

$$\begin{aligned}&p_{0j}+p_{1j}\overset{(7.5),(7.6)}{=}(k_j+l_j)p_{1,j-1} \overset{(7.5)}{=}(k_j{+}l_j)\prod _{i=1}^{j-1}k_ip_{10} \overset{(7.7)}{=}q(k_j{+}l_j)\prod _{i=1}^{j-1}k_ip_{00},\nonumber \\&\quad j\ge 1. \end{aligned}$$
(7.8)

The normalization equation yields

Thus, the stability condition is given by (5.48) and \(p_{00}\) is given by (5.49). \(\square \)

Theorem 5.4—Proof

Let \(\tilde{P}_{ij}(s)=p_{ij}\tilde{S}_{ij}(s)\) be the Laplace transform of the steady-state density

$$\begin{aligned} p_{ij}(r)=\lim _{t\rightarrow \infty }\lim _{\mathrm{d}r\rightarrow 0^+} \frac{\Pr [C(t)=i,Q(t)=j,S(t)\in (r,r+\mathrm{d}r]]}{\mathrm{d}r}, \end{aligned}$$

i.e.,

$$\begin{aligned} \tilde{P}_{ij}(s)=\int _0^{\infty } \mathrm{e}^{-sr} p_{ij}(r)\mathrm{d}r. \end{aligned}$$

Multiplying (5.7)–(5.9) with the corresponding \(p_{ij}\)s yields the following equations for \(\tilde{P}_{ij}(s)\):

$$\begin{aligned} \tilde{P}_{0j}(s)= & {} \frac{1}{s-\lambda }\left( \frac{\lambda p_{0j}\tilde{A}(\lambda )}{1-\tilde{A}(\lambda )}-\frac{\lambda p_{0j}}{1-\tilde{A}(\lambda )}\tilde{A}(s)\right) ,\quad j\ge 1, \end{aligned}$$
(7.9)
$$\begin{aligned} \tilde{P}_{10}(s)= & {} \frac{1}{s-\lambda }\left( \frac{\lambda p_{10} \tilde{B}(\lambda )}{1-\tilde{B}(\lambda )}-\frac{\lambda p_{10} }{1-\tilde{B}(\lambda )}\tilde{B}(s)\right) , \end{aligned}$$
(7.10)
$$\begin{aligned} \tilde{P}_{1j}(s)= & {} \frac{1}{s-\lambda }\left( \frac{\lambda p_{1j} a_j \tilde{B}(\lambda )}{1-\tilde{B}(\lambda )} + \frac{\lambda p_{1j} (1-a_j) \tilde{S}_{1,j-1}(\lambda )}{1-\tilde{S}_{1,j-1}(\lambda )}\right. \nonumber \\&\quad -\,\left. \frac{\lambda p_{1j} a_j }{1-\tilde{B}(\lambda )}\tilde{B}(s) - \frac{\lambda p_{1j} (1-a_j) }{p_{1,j-1} (1-\tilde{S}_{1,j-1}(\lambda ))}\tilde{P}_{1,j-1}(s) \right) ,\quad j\ge 1. \nonumber \\ \end{aligned}$$
(7.11)

We simplify the coefficients appearing in these equations, using (5.21)–(5.23) and (5.33)–(5.35) of the second and third QMCD system. We have that

$$\begin{aligned} \nu _{1j}= & {} \mu _{0,j+1}+\lambda p_{0j}=\lambda p_{1j}+\lambda p_{0j},\quad j\ge 1,\\ a_j= & {} \frac{\nu _{1j}(1-\tilde{B}(\lambda ))}{\lambda p_{1j}},\quad j\ge 1,\\ 1-a_j= & {} \frac{\lambda p_{1,j-1}(1-\tilde{S}_{1,j-1}(s))}{\lambda p_{1j}},\quad j\ge 1, \end{aligned}$$

so we can easily see (using (5.13), (5.21)–(5.23) and (5.33)–(5.35)) that

$$\begin{aligned} \frac{\lambda p_{0j} \tilde{A}(\lambda )}{1-\tilde{A}(\lambda )}= & {} \mu _{0j},\quad j\ge 1, \end{aligned}$$
(7.12)
$$\begin{aligned} \frac{\lambda p_{0j}}{1-\tilde{A}(\lambda )}= & {} \mu _{1j},\quad j\ge 1, \end{aligned}$$
(7.13)
$$\begin{aligned} \frac{\lambda p_{10} \tilde{B}(\lambda )}{1-\tilde{B}(\lambda )}= & {} \mu _{10}, \end{aligned}$$
(7.14)
$$\begin{aligned} \frac{\lambda p_{10}}{1-\tilde{B}(\lambda )}= & {} \nu _{10}, \end{aligned}$$
(7.15)
$$\begin{aligned} \frac{\lambda p_{1j} a_j}{1-\tilde{B}(\lambda )}= & {} \nu _{1j},\quad j\ge 1, \end{aligned}$$
(7.16)
$$\begin{aligned} \frac{\lambda p_{1j} (1-a_j) }{p_{1,j-1} (1-\tilde{S}_{1,j-1}(\lambda ))}= & {} \lambda ,\quad j\ge 1, \end{aligned}$$
(7.17)

and

$$\begin{aligned} \frac{\lambda p_{1j} a_j \tilde{B}(\lambda )}{1-\tilde{B}(\lambda )} + \frac{\lambda p_{1j} (1-a_j) \tilde{S}_{1,j-1}(\lambda )}{1-\tilde{S}_{1,j-1}(\lambda )}=\mu _{1j},\quad j\ge 1. \end{aligned}$$
(7.18)

Substituting (7.12)–(7.18) in (7.9)–(7.11) yields

$$\begin{aligned} \tilde{P}_{0j}(s)= & {} \frac{1}{s-\lambda } \left( \mu _{0j}-\mu _{1j}\tilde{A}(s)\right) ,\quad j\ge 1, \end{aligned}$$
(7.19)
$$\begin{aligned} \tilde{P}_{10}(s)= & {} \frac{1}{s-\lambda } \left( \mu _{10}-\nu _{10}\tilde{B}(s)\right) , \end{aligned}$$
(7.20)
$$\begin{aligned} \tilde{P}_{1j}(s)= & {} \frac{1}{s-\lambda } \left( \mu _{1j}-\nu _{1j}\tilde{B}(s)-\lambda \tilde{P}_{1,j-1}(s)\right) ,\, j\ge 1. \end{aligned}$$
(7.21)

We now apply a generating function approach to determine the equilibrium distribution of the number of customers in the system. To this end, we introduce the generating functions

$$\begin{aligned}&\tilde{P}_0(s,z)=\sum _{j=1}^{\infty } \tilde{P}_{0j}(s)z^j,\quad \tilde{P}_1(s,z)=\sum _{j=0}^{\infty } \tilde{P}_{1j}(s)z^j,\\&\tilde{M}_{0}(z)=\sum _{j=1}^{\infty } \mu _{0j},\quad \tilde{M}_{1}(z)=\sum _{j=0}^{\infty } \mu _{1j}. \end{aligned}$$

Multiplying (7.19) by \((s-\lambda )z^j\), and summing for \(j\ge 1\), yields

$$\begin{aligned} (\lambda -s) \tilde{P}_0(s,z)=(\tilde{M}_1(z)-\mu _{10})\tilde{A}(s)-\tilde{M}_0(z). \end{aligned}$$
(7.22)

Similarly, multiplying (7.21) by \((s-\lambda )z^j\), summing for \(j\ge 1\), and summing also (7.20) yields

$$\begin{aligned} (\lambda -s)\tilde{P}_1(s,z)=\sum _{j=0}^{\infty } (\mu _{0,j+1}+\lambda p_{0j})z^j\tilde{B}(s)+\lambda z \tilde{P}_1(s,z)-\tilde{M}_1(z). \end{aligned}$$
(7.23)

Note, however, that

$$\begin{aligned} \sum _{j=0}^{\infty } \mu _{0,j+1} z^j= & {} \frac{\tilde{M}_0(z)}{z},\\ \sum _{j=0}^{\infty }\lambda p_{0j} z^j= & {} \lambda p_{00}+\lambda \sum _{j=1}^{\infty } \tilde{P}_{0j}(0)z^j=\lambda p_{00}+\lambda \tilde{P}_0(0,z), \end{aligned}$$

so (7.23) assumes the form

$$\begin{aligned} (\lambda -s)\tilde{P}_1(s,z)= & {} \frac{1}{z}\tilde{M}_0(z)\tilde{B}(s)+\lambda p_{00} \tilde{B}(s)+\lambda \tilde{P}_0(0,z)\tilde{B}(s)\nonumber \\&+\,\lambda z \tilde{P}_1(s,z)-\tilde{M}_1(z). \end{aligned}$$
(7.24)

Setting \(s=0\) in (7.22), \(s=0\) in (7.24), \(s=\lambda \) in (7.22), and \(s=\lambda (1-z)\) in (7.24) yields the system

$$\begin{aligned} \lambda \tilde{P}_0(0,z)= & {} \tilde{M}_1(z)-\mu _{10}-\tilde{M}_0(z), \end{aligned}$$
(7.25)
$$\begin{aligned} \lambda (1-z) \tilde{P}_1(0,z)= & {} \frac{1}{z}\tilde{M}_0(z)+\lambda p_{00}+\lambda \tilde{P}_0(0,z)-\tilde{M}_1(z), \end{aligned}$$
(7.26)
$$\begin{aligned} \tilde{M}_1(z)\tilde{A}(\lambda )= & {} \mu _{10} \tilde{A}(\lambda )+\tilde{M}_0(z),\\ \tilde{M}_1(z)= & {} \frac{1}{z}\tilde{M}_0(z)\tilde{B}(\lambda (1-z)){+}\lambda p_{00} \tilde{B}(\lambda (1-z)){+}\lambda \tilde{P}_0(0,z)\tilde{B}(\lambda (1{-}z)),\nonumber \end{aligned}$$
(7.27)

in the unknowns \(\tilde{M}_0(z), \tilde{M}_1(z), \tilde{P}_0(0,z)\), and \(\tilde{P}_1(0,z)\). We can easily solve the system by using sequentially (7.27), (7.25), and (7.26), to express the unknowns \(\tilde{M}_1(z), \tilde{P}_0(0,z)\), and \(\tilde{P}_1(0,z)\) in terms of \(\tilde{M}_0(z)\). We get

$$\begin{aligned} \tilde{M}_1(z)= & {} \lambda p_{00} +\frac{1}{\tilde{A}(\lambda )}\tilde{M}_0(z), \end{aligned}$$
(7.28)
$$\begin{aligned} \tilde{P}_0(0,z)= & {} \frac{1-\tilde{A}(\lambda )}{\lambda \tilde{A}(\lambda )}\tilde{M}_0(z), \end{aligned}$$
(7.29)
$$\begin{aligned} \tilde{P}_1(0,z)= & {} \frac{1}{\lambda z}\tilde{M}_0(z). \end{aligned}$$
(7.30)

We can then plug (7.28)–(7.30) and obtain the equation

$$\begin{aligned} \lambda p_{00} +\frac{1}{\tilde{A}(\lambda )}\tilde{M}_0(z)= \left( \frac{1}{z}\tilde{M}_0(z) +\lambda p_{00} +\frac{1-\tilde{A}(\lambda )}{\tilde{A}(\lambda )}\tilde{M}_0(z)\right) \tilde{B}(\lambda (1-z)) \end{aligned}$$
(7.31)

for \(\tilde{M}_0(z)\). Solving (7.31) for \(\tilde{M}_0(z)\) and substituting in (7.28)–(7.30) yields the following explicit expressions for \(\tilde{M}_0(z), \tilde{M}_1(z), \tilde{P}_0(0,z)\), and \(\tilde{P}_1(0,z)\):

$$\begin{aligned} \tilde{M}_0(z)= & {} \frac{\lambda \tilde{A}(\lambda )z(1-\tilde{B}(\lambda (1-z)))}{\tilde{A}(\lambda )\tilde{B}(\lambda (1-z))(1-z)-z(1-\tilde{B}(\lambda (1-z)))}p_{00},\nonumber \\ \tilde{M}_1(z)= & {} \frac{\lambda \tilde{A}(\lambda )\tilde{B}(\lambda (1-z))(1-z)}{\tilde{A}(\lambda )\tilde{B}(\lambda (1-z))(1-z)-z(1-\tilde{B}(\lambda (1-z)))}p_{00},\nonumber \\ \tilde{P}_0(0,z)= & {} \frac{(1-\tilde{A}(\lambda ))z(1-\tilde{B}(\lambda (1-z)))}{\tilde{A}(\lambda )\tilde{B}(\lambda (1-z))(1-z)-z(1-\tilde{B}(\lambda (1-z)))}p_{00}, \end{aligned}$$
(7.32)
$$\begin{aligned} \tilde{P}_1(0,z)= & {} \frac{\tilde{A}(\lambda )(1-\tilde{B}(\lambda (1-z)))}{\tilde{A}(\lambda )\tilde{B}(\lambda (1-z))(1-z)-z(1-\tilde{B}(\lambda (1-z)))}p_{00}. \end{aligned}$$
(7.33)

The generating function of the number of customers in the system in steady-state is

$$\begin{aligned} K(z)=\sum _{j=0}^{\infty } p_{0j}z^j+\sum _{j=1}^{\infty } p_{1,j-1}z^j=p_{00}+\tilde{P}_0(0,z)+z\tilde{P}_1(0,z). \end{aligned}$$

Using (7.32)–(7.33), we obtain

$$\begin{aligned} K(z)=\frac{\tilde{A}(\lambda )(1-z)\tilde{B}(\lambda (1-z))}{\tilde{A}(\lambda )\tilde{B}(\lambda (1-z)))(1-z)-z(1-\tilde{B}(\lambda (1-z)))}p_{00}. \end{aligned}$$
(7.34)

The probability of an empty system \(p_{00}\) is determined from the normalization equation \(K(1)=1\). Using L’Hospital’s rule, we obtain

$$\begin{aligned} p_{00}=1-\frac{\lambda (-1)\tilde{B}'(0)}{\tilde{A}(\lambda )}=1-\frac{\lambda E[B]}{\tilde{A}(\lambda )}. \end{aligned}$$
(7.35)

The system is stable if and only if \(p_{00}>0\), which gives the stability condition (5.50). Substituting (7.35) in (7.34) yields (5.51). \(\square \)

1.2 Alternative proofs using the supplementary variable method

In the rest of the Appendix, we use the well-known supplementary variable method, introduced by Cox [8], to provide analytic proofs for the three QMCD Systems (Corollaries 5.15.3) which constitute the basis for the recursive schemes for the performance analysis of the model.

To this end, we introduce the following transient probabilities and densities:

$$\begin{aligned} p_{ij}^{(t)}= & {} \Pr [C(t)=i,Q(t)=j],\quad i=0,1,\quad j\ge 0, \\ p_{0j}^{(t)}(r)= & {} \lim _{\mathrm{d}r\rightarrow 0^+} \frac{ \Pr [C(t)=0,Q(t)=j,S(t)\in (r,r+\mathrm{d}r]]}{\mathrm{d}r},\quad j\ge 1, \\ p_{1j}^{(t)}(r)= & {} \lim _{\mathrm{d}r\rightarrow 0^+} \frac{\Pr [C(t)=1,Q(t)=j,S(t)\in (r,r+\mathrm{d}r]]}{\mathrm{d}r},\quad j\ge 0, \end{aligned}$$

and their steady-state counterparts

$$\begin{aligned} p_{ij}= & {} \lim _{t\rightarrow \infty }p_{ij}^{(t)},\quad i=0,1,\quad j\ge 0, \end{aligned}$$
(7.36)
$$\begin{aligned} p_{0j}(r)= & {} \lim _{t\rightarrow \infty }p_{0j}^{(t)}(r),\quad j\ge 1, \end{aligned}$$
(7.37)
$$\begin{aligned} p_{1j}(r)= & {} \lim _{t\rightarrow \infty }p_{1j}^{(t)}(r),\quad j\ge 0. \end{aligned}$$
(7.38)

A moment of reflection reveals that the analytic quantity \(p_{ij}(0)\) is identical to the corresponding rate \(\mu _{ij}\) of service/seeking time completions that we considered in the probabilistic derivations, for all ij. Therefore, similarly to (5.1) and (5.2), we have in the present analytic framework the equations

$$\begin{aligned} \nu _{1j}= & {} p_{0,j+1}(0)+\lambda _{0j}p_{0j}, \end{aligned}$$
(7.39)
$$\begin{aligned} \tilde{B}_{j}\left( s\right)= & {} \frac{1}{\nu _{1j}}\left( \mu _{0,j+1} \tilde{B }_{0j}\left( s\right) +\lambda _{0j}p_{0j}\tilde{B}_{1j}\left( s\right) \right) . \end{aligned}$$
(7.40)

Moreover, we denote by \(\tilde{P}_{ij}(s)\) the Laplace transform (LT) of the steady-state density \(p_{ij}(r)\), i.e.,

$$\begin{aligned} \tilde{P}_{ij}(s)=\int _{0}^{\infty }\mathrm{e}^{-sr}p_{ij}(r)\mathrm{d}r=p_{ij}\tilde{S} _{ij}(s),\quad (i,j)\in \{0,1\}\times \{0,1,2,\ldots \}{\setminus }\{(0,0)\}. \end{aligned}$$
(7.41)

We consider the evolution of the continuous time Markov process \( \{(C(t),Q(t),S\left( t\right) ):t\ge 0\}\) in the interval \([t,t+\mathrm{d}t]\). Then, we have Lemma 7.1.

Lemma 7.1

The steady-state probabilities \(p_{0j}, j\ge 1,\) the steady-state densities \(p_{ij}(0)\) and the LTs \(\tilde{P}_{ij}(s), (i,j)\in \{0,1\}\times \{0,1,2,\ldots \}{\setminus }\{(0,0)\}\), satisfy the following system of equations:

$$\begin{aligned} \lambda _{00}p_{00}-p_{10}(0)= & {} 0, \end{aligned}$$
(7.42)
$$\begin{aligned} (s-\lambda _{0j})\tilde{P}_{0j}(s)= & {} p_{0j}(0)-p_{1j}(0)\tilde{A}_{j}(s),\quad j\ge 1, \end{aligned}$$
(7.43)
$$\begin{aligned} (s-\lambda _{10})\tilde{P}_{10}(s)= & {} p_{10}(0)-p_{01}(0)\tilde{B} _{00}(s)-\lambda _{00}p_{00}\tilde{B}_{10}(s), \end{aligned}$$
(7.44)
$$\begin{aligned} (s-\lambda _{1j})\tilde{P}_{1j}(s)= & {} p_{1j}(0)-p_{0,j+1}(0)\tilde{B} _{0j}(s)-\lambda _{0j}p_{0j}\tilde{B}_{1j}(s)-\lambda _{1,j-1}\tilde{P} _{1,j-1}(s).\nonumber \\ \end{aligned}$$
(7.45)

Proof

Considering the evolution of \(\{(C(t),Q(t),R(t)):t\ge 0\}\) in the interval \( [0,t+\mathrm{d}t]\) and conditioning on its value at time t, we have the equations

$$\begin{aligned} p_{00}^{(t+\mathrm{d}t)}= & {} p_{00}^{(t)}(1-\lambda _{00}\mathrm{d}t)+p_{10}^{(t)}(0)\mathrm{d}t+o(\mathrm{d}t), \end{aligned}$$
(7.46)
$$\begin{aligned} p_{0j}^{(t+\mathrm{d}t)}(r-\mathrm{d}t)= & {} p_{0j}^{(t)}(r)(1-\lambda _{0j}\mathrm{d}t)+p_{1j}^{(t)}(0)a_{j}(r)\mathrm{d}t+o(\mathrm{d}t),\quad j\ge 1, \end{aligned}$$
(7.47)
$$\begin{aligned} p_{10}^{(t+\mathrm{d}t)}(r-\mathrm{d}t)= & {} p_{10}^{(t)}(r)(1-\lambda _{10}\mathrm{d}t)+p_{01}^{(t)}(0)\mathrm{d}tb_{00}(r)+p_{00}^{(t)}\lambda _{00}\mathrm{d}tb_{10}(r)+o(\mathrm{d}t),\nonumber \\ \end{aligned}$$
(7.48)
$$\begin{aligned} p_{1j}^{(t+\mathrm{d}t)}(r-\mathrm{d}t)= & {} p_{1j}^{(t)}(r)(1-\lambda _{1j}\mathrm{d}t)+p_{0,j+1}^{(t)}(0)\mathrm{d}tb_{0j}(r)+p_{0j}^{(t)}\lambda _{0j}\mathrm{d}tb_{1j}(r) \nonumber \\&+\,p_{1,j-1}^{(t)}(r)\lambda _{1,j-1}\mathrm{d}t+o(\mathrm{d}t),\quad j\ge 1, \end{aligned}$$
(7.49)

for \(\mathrm{d}t\rightarrow 0^+\). Taking the limits of (7.46)–(7.49) as \(t\rightarrow \infty , \) and using (7.36)–(7.38) yields

$$\begin{aligned} p_{00}= & {} p_{00}(1-\lambda _{00}\mathrm{d}t)+p_{10}(0)\mathrm{d}t+o(\mathrm{d}t), \end{aligned}$$
(7.50)
$$\begin{aligned} p_{0j}(r-\mathrm{d}t)= & {} p_{0j}(r)(1-\lambda _{0j}\mathrm{d}t)+p_{1j}(0)a_{j}(r)\mathrm{d}t+o(\mathrm{d}t),\quad j\ge 1, \end{aligned}$$
(7.51)
$$\begin{aligned} p_{10}(r-\mathrm{d}t)= & {} p_{10}(r)(1-\lambda _{10}\mathrm{d}t)+p_{01}(0)\mathrm{d}tb_{00}(r)+p_{00}\lambda _{00}\mathrm{d}tb_{10}(r)+o(\mathrm{d}t),\nonumber \\ \end{aligned}$$
(7.52)
$$\begin{aligned} p_{1j}(r-\mathrm{d}t)= & {} p_{1j}(r)(1-\lambda _{1j}\mathrm{d}t)+p_{0,j+1}(0)\mathrm{d}tb_{0j}(r)+p_{0j}\lambda _{0j}\mathrm{d}tb_{1j}(r) \nonumber \\&+\,p_{1,j-1}(r)\lambda _{1,j-1}\mathrm{d}t+o(\mathrm{d}t),\quad j\ge 1, \end{aligned}$$
(7.53)

for \(\mathrm{d}t\rightarrow 0^+\). Rearranging the terms appropriately, dividing by \(\mathrm{d}t \) and taking the limits as \(\mathrm{d}t\rightarrow 0^+\) in (7.50)–(7.53) yields

$$\begin{aligned} p_{10}(0)= & {} \lambda _{00}p_{00}, \end{aligned}$$
(7.54)
$$\begin{aligned} p_{0j}^{\prime }(r)= & {} \lambda _{0j}p_{0j}(r)-p_{1j}(0)a_{j}(r),\quad j\ge 1, \end{aligned}$$
(7.55)
$$\begin{aligned} p_{10}^{\prime }(r)= & {} \lambda _{10}p_{10}(r)-p_{01}(0)b_{00}(r)-\lambda _{00}p_{00}b_{10}(r), \end{aligned}$$
(7.56)
$$\begin{aligned} p_{1j}^{\prime }(r)= & {} \lambda _{1j}p_{1j}(r)-p_{0,j+1}(0)b_{0j}(r)-\lambda _{0j}p_{0j}b_{1j}(r)-\lambda _{1,j-1}p_{1,j-1}(r),\quad j\ge 1.\nonumber \\ \end{aligned}$$
(7.57)

Equation (7.54) yields immediately (7.42). Also, multiplying (7.55)–(7.57) by \(\mathrm{e}^{-sr}\) and integrating with respect to \( s\in [0,\infty )\) yields equations (7.43)–(7.45).\(\square \)

Now, we can provide an analytic proof of the second and the third QMCD systems.

Lemma 7.2

The steady-state probabilities \(p_{ij}\) and the steady-state densities \(p_{ij}(0)\) satisfy the second QMCD system:

$$\begin{aligned} \lambda _{00}p_{00}= & {} p_{10}(0), \end{aligned}$$
(7.58)
$$\begin{aligned} \lambda _{0j}p_{0j}= & {} p_{1j}(0)-p_{0j}(0),\quad j\ge 1, \end{aligned}$$
(7.59)
$$\begin{aligned} \lambda _{1j}p_{1j}= & {} p_{0,j+1}(0),\quad j\ge 0. \end{aligned}$$
(7.60)

Together with the LSTs \(\tilde{S}_{ij}(s)\), they also satisfy the third QMCD system:

$$\begin{aligned} p_{0j}(0)= & {} p_{1j}(0)\tilde{A}_j(\lambda _{0j}),\quad j\ge 1, \end{aligned}$$
(7.61)
$$\begin{aligned} p_{10}(0)= & {} \lambda _{00} p_{00}\tilde{B}_{10}(\lambda _{10})+p_{01}(0)\tilde{ B}_{00}(\lambda _{10})=\nu _{10}\tilde{B}_0(\lambda _{10}), \end{aligned}$$
(7.62)
$$\begin{aligned} p_{1j}(0)= & {} \lambda _{0j} p_{0j}\tilde{B}_{1j}(\lambda _{1j}) +\lambda _{1,j-1} p_{1,j-1} \tilde{S}_{1,j-1}(\lambda _{1j})+p_{0,j+1}(0)\tilde{B} _{0j}(\lambda _{1j}) \nonumber \\= & {} \nu _{1j}\tilde{B}_j(\lambda _{1j})+\lambda _{1,j-1} p_{1,j-1} \tilde{S} _{1,j-1}(\lambda _{1j}),\quad j\ge 1. \end{aligned}$$
(7.63)

Proof

Equation (7.42) yields immediately (7.58). Taking \( s=0\) in (7.43)–(7.45) yields

$$\begin{aligned} \lambda _{0j}p_{0j}= & {} p_{1j}(0)-p_{0j}(0),\quad j\ge 1, \end{aligned}$$
(7.64)
$$\begin{aligned} \lambda _{10}p_{10}= & {} p_{01}(0)+\lambda _{00}p_{00}-p_{10}(0), \end{aligned}$$
(7.65)
$$\begin{aligned} \lambda _{1j}p_{1j}= & {} p_{0,j+1}(0)+\lambda _{0j}p_{0j}+\lambda _{1,j-1}p_{1,j-1}-p_{1j}(0),\quad j\ge 1. \end{aligned}$$
(7.66)

Equation (7.64) is identical to Eq. (7.59). Also, using (7.58), Eq. (7.65) yields (7.60) for \(j=0\).

Using (7.59), Eq. (7.66) assumes the form

$$\begin{aligned} \lambda _{1j}p_{1j}=p_{0,j+1}(0)-p_{0j}(0)+\lambda _{1,j-1}p_{1,j-1},\quad j\ge 1. \end{aligned}$$

Iterating this equation yields

$$\begin{aligned} \lambda _{1j}p_{1j}= & {} \sum _{i=1}^j \left( p_{0,i+1}(0)-p_{0i}(0)\right) +\lambda _{10}p_{10} \\= & {} p_{0,j+1}(0)-p_{01}(0)+\lambda _{10}p_{10},\quad j\ge 1. \end{aligned}$$

Then, using (7.60) for \(j=0\), we deduce (7.60) for \(j\ge 1\).

Equation (7.43) for \(s=\lambda _{0j}\) yields (7.61). Also, setting \(s=\lambda _{10}\) in Eq. (7.44) and using (7.40) yields (7.62). Similarly, Eq. (7.45) for \( s=\lambda _{1j}\) in combination with (7.40) and (7.41) yields (7.63). \(\square \)

Finally, we provide an analytic proof of the first QMCD system, i.e., of Corollary 5.1 with \(a_j\) given by (5.13).

Corollary 5.1—Proof

Analytic proof of (5.7)–(5.9) with \(a_j\) given by (5.13).

Equation (7.43) can be written as

$$\begin{aligned} \tilde{P}_{0j}(s)=\frac{1}{s-\lambda _{0j}}\left( p_{0j}(0)-p_{1j}(0)\tilde{A }_{j}(s)\right) ,\quad j\ge 1. \end{aligned}$$

Using (7.61), the above equation yields

$$\begin{aligned} \tilde{P}_{0j}(s)=\frac{1}{s-\lambda _{0j}}p_{1j}(0)\left( \tilde{A} _{j}(\lambda _{0j})-\tilde{A}_{j}(s)\right) ,\quad j\ge 1. \end{aligned}$$

Dividing by \(p_{0j}\), we deduce that

which proves formula (5.7).

Equation (7.44) can be written as

$$\begin{aligned} \tilde{P}_{10}(s)=\frac{1}{s-\lambda _{10}}\left( p_{10}(0)-p_{01}(0)\tilde{B }_{00}(s)-p_{00}\lambda _{00}\tilde{B}_{10}(s)\right) . \end{aligned}$$

Using (7.62) we obtain

$$\begin{aligned} \tilde{P}_{10}(s)=\frac{1}{s-\lambda _{10}}\left[ p_{01}(0)\left( \tilde{B} _{00}(\lambda _{10})-\tilde{B}_{00}(s)\right) +p_{00}\lambda _{00}\left( \tilde{B}_{10}(\lambda _{10})-\tilde{B}_{10}(s)\right) \right] , \end{aligned}$$

and dividing by \(p_{10}\) yields

which proves formula (5.8).

Similarly, Eq. (7.45) is written as

$$\begin{aligned} \tilde{P}_{1j}(s)=\frac{1}{s-\lambda _{1j}}\left( p_{1j}(0)-p_{0,j+1}(0) \tilde{B}_{0j}(s)-p_{0j}\lambda _{0j}\tilde{B}_{1j}(s)-\lambda _{1,j-1} \tilde{P}_{1,j-1}(s)\right) ,\quad j\ge 1. \end{aligned}$$

Using (7.63) and (7.41) we obtain

$$\begin{aligned} \tilde{P}_{1j}(s)= & {} \frac{1}{s-\lambda _{1j}}\left[ p_{0,j+1}(0)\left( \tilde{B}_{0j}(\lambda _{1j})-\tilde{B}_{0j}(s)\right) +\lambda _{0j}p_{0j}\left( \tilde{B}_{1j}(\lambda _{1j})-\tilde{B}_{1j}(s)\right) \right. \\&+\left. \lambda _{1,j-1}\left( \tilde{P}_{1,j-1}(\lambda _{1j})-\tilde{P} _{1,j-1}(s)\right) \right] ,\quad j\ge 1. \end{aligned}$$

Dividing by \(p_{1j}\) yields

where

$$\begin{aligned} \alpha _{j}=\frac{\nu _{1j}\left( 1-\tilde{B}_{j}(\lambda _{1j})\right) }{ \lambda _{1j}p_{1j}},\quad j\ge 1, \end{aligned}$$
(7.67)

and

$$\begin{aligned}&\frac{\lambda _{1,j-1}p_{1,j-1}\left( 1-\tilde{S}_{1,j-1}(\lambda _{1j})\right) }{\lambda _{1j}p_{1j}} \\&\quad \overset{(7.63)}{=} \frac{\lambda _{1,j-1}p_{1,j-1}-p_{1j}(0)+p_{j}^{1}\tilde{B}_{j}(\lambda _{1j})}{\lambda _{1j}p_{1j}} \\&\quad \overset{(7.59)}{=} \frac{\lambda _{1,j-1}p_{1,j-1}-\lambda _{0j}p_{0j}-p_{0j}(0)+p_{j}^{1}\tilde{B} _{j}(\lambda _{1j})}{\lambda _{1j}p_{1j}} \\&\quad \overset{(7.60)}{=} \frac{-\lambda _{0j}p_{0j}+p_{j}^{1} \tilde{B}_{j}(\lambda _{1j})}{\lambda _{1j}p_{1j}} \\&\quad \overset{(7.39)}{=} \frac{p_{0,j+1}(0)-p_{j}^{1}+p_{j}^{1} \tilde{B}_{j}(\lambda _{1j})}{\lambda _{1j}p_{1j}} \\&\quad \overset{(7.60)}{=} \frac{\lambda _{1j}p_{1j}-p_{j}^{1}\left( 1-\tilde{B}_{j}(\lambda _{1j})\right) }{\lambda _{1j}p_{1j}} \\&\quad \overset{(7.67)}{=} 1-\alpha _{j},\quad j\ge 1. \end{aligned}$$

Thus, formula (5.9) has been proved with \(a_j\) given by (5.13). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, O., Economou, A. & Manou, A. The state-dependent M / G / 1 queue with orbit. Queueing Syst 90, 89–123 (2018). https://doi.org/10.1007/s11134-018-9582-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-018-9582-1

Keywords

Mathematics Subject Classification

Navigation