Skip to main content
Log in

An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Elliptic 6j-symbols first appeared in connection with solvable models of statistical mechanics. They include many interesting limit cases, such as quantum 6j-symbols (or q-Racah polynomials) and Wilson’s biorthogonal 10 W 9 functions. We give an elementary construction of elliptic 6j-symbols, which immediately implies several of their main properties. As a consequence, we obtain a new algebraic interpretation of elliptic 6j-symbols in terms of Sklyanin algebra representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Salam, W.A., Ismail, M.E.H.: A q-beta integral on the unit circle and some biorthogonal rational functions. Proc. Amer. Math. Soc. 121, 553–561 (1994)

    Article  MathSciNet  Google Scholar 

  2. Al-Salam, W.A., Verma, A.: q-Analogs of some biorthogonal functions. Canad. Math. Bull. 26, 225–227 (1983)

    MathSciNet  Google Scholar 

  3. Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities. J. Statist. Phys. 35, 193–266 (1984)

    Article  MathSciNet  Google Scholar 

  4. Askey, R., Wilson, J.A.: A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols. SIAM J. Math. Anal. 10, 1008–1016 (1979)

    Article  MathSciNet  Google Scholar 

  5. Askey, R., Wilson, J.A.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54(319) (1985)

  6. Babelon, O.: Universal exchange algebra for Bloch waves and Liouville theory. Comm. Math. Phys. 139, 619–643 (1991)

    Article  MathSciNet  Google Scholar 

  7. Baxter, R.J.: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II. Equivalence to a generalized ice-type model. Ann. Phys. 76, 25–47 (1973)

    Article  MathSciNet  Google Scholar 

  8. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  9. Date, E.M., Jimbo, A., Kuniba, T., Miwa, M., Okado.: Exactly solvable SOS models II. Proof of the star-triangle relation and combinatorial identities. In: Jimbo, M., et al. (eds.) Conformal Field Theory and Solvable Lattice Models, pp. 17–122, Adv. Stud. Pure Math. 16, Academic Press, Boston, MA (1988)

  10. Date, E., Jimbo, M., Miwa, T., Okado, M.: Fusion of the eight vertex SOS model. Lett. Math. Phys. 12 (1986), 209–215; Erratum and addendum. Lett. Math. Phys. 14, 97 (1987)

    Google Scholar 

  11. Etingof, P.I., Frenkel, I. B., Kirillov, A. A.: Lectures on representation theory and knizhnik-zamolodchikov equations. Amer. Math. Soc., Providence, RI (1998)

  12. Felder, G., Varchenko, A.: On representations of the elliptic quantum group \(E\sb {\tau,\eta}({\rm sl}\sb 2)\). Comm. Math. Phys. 181, 741–761 (1996)

    Google Scholar 

  13. Frenkel, I.B., Turaev, V.G.: Trigonometric solutions of the Yang–Baxter equation, nets, and hypergeometric functions. In: Gindikin, S., et al. (eds.) Functional Analysis on the Eve of the 21st Century, vol. 1, pp. 65–118, Birkhäuser, Boston (1995)

    Google Scholar 

  14. Frenkel, I.B., Turaev, V. G.: Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions. In: Arnold, V.I., et al. (eds.) The Arnold–Gelfand Mathematical Seminars, pp. 171–204. Birkhäuser, Boston (1997)

    Google Scholar 

  15. Gasper, G., Rahman, M.: Basic hypergeometric series, 2nd ed., Cambridge University Press (2004)

  16. Gupta, D.P., Masson, D.R.: Contiguous relations, continued fractions and orthogonality. Trans. Amer. Math. Soc. 350, 769–808 (1998)

    Article  MathSciNet  Google Scholar 

  17. Ismail, M.E.H., Masson, D.R.: q-Hermite polynomials, biorthogonal rational functions, and q-beta integrals. Trans. Amer. Math. Soc. 346, 63–116 (1994)

    Article  MathSciNet  Google Scholar 

  18. Ismail, M.E.H., Masson, D.R.: Generalized orthogonality and continued fractions. J. Approx. Theory 83, 1–40 (1995)

    Article  MathSciNet  Google Scholar 

  19. Ismail, M.E.H., Stanton, D.: Applications of q-Taylor theorems. J. Comput. Appl. Math. 153, 259–272 (2003)

    Article  MathSciNet  Google Scholar 

  20. Jackson, F.H.: Summation of q-hypergeometric series. Messenger of Math. 50 (1921), 101–112.

    Google Scholar 

  21. B. Jurčo,. On coherent states for the simplest quantum groups. Lett. Math. Phys. 21, 51–58 (1991)

    Article  MathSciNet  Google Scholar 

  22. Kirillov, A.N., Reshetikhin, N.Yu.: Representations of the algebra \({U}\sb q({\rm sl}(2))\), q-orthogonal polynomials and invariants of links. In: Kac, V.G. (ed.) Infinite-dimensional Lie Algebras and Groups, pp. 285–339. World Sci. Publ. Co., Teaneck, NJ (1989)

  23. Koekoek, R., Swarttouw, R.F.: The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue, Delft University of Technology, 1998, ohttp://aw.twi.tudelft.nl/~koekoek/askey/index.html

  24. Koelink, H.T.: Askey–Wilson polynomials and the quantum SU(2) group: survey and applications. Acta Appl. Math. 44, 295–352 (1996)

    MathSciNet  Google Scholar 

  25. Koelink, E., van Norden, Y., Rosengren, H.: Elliptic U(2) quantum group and elliptic hypergeometric series. Comm. Math. Phys. 245, 519–537 (2004)

    Article  MathSciNet  Google Scholar 

  26. Koelink, H.T., Van der Jeugt, J.: Convolutions for orthogonal polynomials from Lie and quantum algebra representations. SIAM J. Math. Anal. 29, 794–822 (1998)

    Article  MathSciNet  Google Scholar 

  27. Koornwinder, T.H.: Krawtchouk polynomials, a unification of two different group theoretic interpretations. SIAM J. Math. Anal. 13, 1011–1023 (1982)

    Article  MathSciNet  Google Scholar 

  28. Koornwinder, T.H.: Askey–Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM J. Math. Anal. 24, 795–813 (1993)

    Article  MathSciNet  Google Scholar 

  29. Koornwinder, T.H.: A second addition formula for continuous q-ultraspherical polynomials. In: Koelink, E., Ismail, M.E.H. (eds.) Theory and Applications of Special Functions. A Volume Dedicated to Mizan Rahman, pp. 339–260. Kluwer Acad. Publ. (2005)

  30. Kulish, P.P., Reshetikhin, N.Yu., Sklyanin, E.K.: Yang–Baxter equations and representation theory I.. Lett. Math. Phys. 5, 393–403 (1981)

    Article  MathSciNet  Google Scholar 

  31. Leonard, D.A.: Orthogonal polynomials, duality and association schemes. SIAM J. Math. Anal. 13, 656–663 (1982)

    Article  MathSciNet  Google Scholar 

  32. Meixner, J.: Unformung gewisser Reihen, deren Glieder Produkte hypergeometrische Funktionen sind. Deutsche Math. 6, 341–349 (1941)

    MathSciNet  Google Scholar 

  33. Pastro, P.I.: Orthogonal polynomials and some q-beta integrals of Ramanujan. J. Math. Anal. Appl. 112, 517–540 (1985)

    Article  MathSciNet  Google Scholar 

  34. G. Racah,. Theory of complex spectra II. Phys. Rev. 62, 438–462 (1942)

    Article  Google Scholar 

  35. Rahman, M.: Families of biorthogonal rational functions in a discrete variable. SIAM J. Math. Anal. 12, 355–367 (1981)

    Article  MathSciNet  Google Scholar 

  36. Rahman, M.: An integral representation of a \(\sb {10}\varphi\sb 9\) and continuous bi-orthogonal \(_{10}\phi_9\) rational functions. Canad. J. Math. 38, 605–618 (1986)

    Google Scholar 

  37. Rahman, M.: Some extensions of Askey–Wilson’s q-beta integral and the corresponding orthogonal systems. Canad. Math. Bull. 31, 467–476 (1988)

    MathSciNet  Google Scholar 

  38. Rahman, M.: Biorthogonality of a system of rational functions with respect to a positive measure on [−1,1]. SIAM J. Math. Anal. 22, 1430–1441 (1991)

    Article  MathSciNet  Google Scholar 

  39. Rahman, M.: Suslov, S.K., Classical biorthogonal rational functions. In: Gonchar, A.A., Saff, E.B. (eds.) Methods of Approximation Theory in Complex Analysis and Mathematical Physics, pp. 131–146. Lecture Notes in Math. 1550, Springer-Verlag, Berlin (1993)

  40. Rains, E.M.: Transformations of elliptic hypergeometric integrals. math.QA/0309252

  41. Rains, E.M.: BC n -symmetric abelian functions, math.CO/0402113

  42. H. Rosengren, A new quantum algebraic interpretation of the Askey–Wilson polynomials. Contemp. Math. 254, 371–394 (2000)

    MathSciNet  Google Scholar 

  43. Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181, 417–447 (2004)

    Article  MathSciNet  Google Scholar 

  44. Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Functional Anal. Appl. 16, 263–270 (1982)

    Article  MathSciNet  Google Scholar 

  45. Sklyanin, E.K.: Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras. Functional Anal. Appl. 17, 273–284 (1983)

    Article  MathSciNet  Google Scholar 

  46. Spiridonov, V.P.: An elliptic incarnation of the Bailey chain. Int. Math. Res. Not. 37, 1945–1977 (2002)

    Article  MathSciNet  Google Scholar 

  47. Spiridonov, V.P.: Theta hypergeometric series. In: Malyshev, V. and Vershik, A. (eds.) Asymptotic Combinatorics with Applications to Mathematical Physics, pp. 307–327. Kluwer Acad. Publ., Dordrecht (2002)

    Google Scholar 

  48. Spiridonov, V.P.: Theta hypergeometric integrals. Algebra i Analiz 15, 161–215 (2003)

    MathSciNet  Google Scholar 

  49. Spiridonov, V.P., Zhedanov, A.S.: Spectral transformation chains and some new biorthogonal rational functions. Comm. Math. Phys. 210, 49–83 (2000)

    Article  MathSciNet  Google Scholar 

  50. Spiridonov, V.P., Zhedanov, A.S.: Generalized eigenvalue problems and a new family of rational functions biorthogonal on elliptic grids. In: Bustoz, J., et al. (eds.) Special Functions 2000: Current Perspective and Future Directions, pp. 365–388. Kluwer Acad. Publ., Dordrecht (2001)

    Google Scholar 

  51. Stokman, J.V.: Vertex-IRF transformations, dynamical quantum groups and harmonic analysis. Indag. Math. 14, 545–570 (2003)

    Article  MathSciNet  Google Scholar 

  52. Takebe, T.: Bethe ansatz for higher spin eight-vertex models. J. Phys. A 28, 6675–6706 (1995)

    Article  MathSciNet  Google Scholar 

  53. Tannery, J., Molk, J.: ’Eléments de la théorie des fonctions elliptiques, Tome III: Calcul intégral, Gauthier-Villars, Paris (1898)

  54. Terwilliger, P.: Leonard pairs from 24 points of view. Rocky Mountain J. Math. 32, 827–888 (2002)

    Article  MathSciNet  Google Scholar 

  55. Terwilliger, P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other; an overview. verb+math.RA/0307063+

  56. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Walter de Gruyter. & Co., Berlin (1994)

    MATH  Google Scholar 

  57. Vilenkin, N.Ya., Klimyk, A.U.: Representation of Lie Groups and Special Functions, vol. 1. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  58. Wigner, E.P.: On the matrices which reduce the Kronecker products of representations of S. R. groups, manuscript (1940), published. In: Biedenharn, L.C., Van Dam, H. (eds.) Quantum Theory of Angular Momentum, pp. 87–133. Academic Press, New York (1965)

  59. Wilson, J.A.: Hypergeometric series, recurrence relations and some new orthogonal functions, PhD Thesis, University of Wisconsin, Madison (1978)

  60. Wilson, J.A.: Orthogonal functions from Gram determinants. SIAM J. Math. Anal. 22, 1147–1155 (1991)

    Article  MathSciNet  Google Scholar 

  61. Zelenkov, V.: Krawtchouk polynomials home page. ohttp://www.geocities.com/orthpol/

  62. Zhedanov, A.S.: “Hidden symmetry” of Askey–Wilson polynomials. Theoret. Math. Phys. 89, 1146–1157 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hjalmar Rosengren.

Additional information

Dedicated to Richard Askey.

2000 Mathematics Subject Classification Primary—33D45, 33D80, 82B23

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosengren, H. An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic). Ramanujan J 13, 131–166 (2007). https://doi.org/10.1007/s11139-006-0245-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-006-0245-1

Keywords

Navigation