Skip to main content
Log in

High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We review the studies of gyrotron-type microwave devices whose electrodynamic system has the form of an oversized metal waveguide with a helically corrugated internal surface. For certain parameters, such a corrugation changes radically the waveguide dispersion ensuring an almost constant group velocity of the eigenmode for a small (close to zero) longitudinal wave number in a wide frequency band. The use of “helical” waveguides along with electron optical systems which form near-axis electron beams makes it possible to create high-efficiency amplifiers based on gyro-traveling-wave tubes (gyro-TWTs) with a wide instantaneous frequency band of amplification and gyro-backward-wave oscillators (gyro-BWOs) with continuous wideband tuning of the oscillation frequency. The studied devices are superior to the well-studied microwave sources of this type (gyroklystrons and gyrotrons) in frequency band, by more than an order of magnitude, and are not inferior to them in efficiency even for a wide spread of electron velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gaponov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2, No. 4, 443 (1959).

    Google Scholar 

  2. V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 3, No. 1, 57 (1960).

    Google Scholar 

  3. R. H. Pantell, Proc. IRE, 47, 1146 (1959).

    Google Scholar 

  4. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794 (1967).

    Google Scholar 

  5. J. J. Hirshfield and V. L. Granatstein, IEEE Trans. Microwave Theory Tech., MTT-25, 522 (1977).

    Article  ADS  Google Scholar 

  6. P. E. Ferguson, G. Valier, and R. S. Symons, IEEE Trans. Microwave Theory Tech., MTT-29, 794 (1981).

    Article  ADS  Google Scholar 

  7. A. K. Ganguly and S. Ahn, Int. J. Electron., 53, 641 (1982).

    Google Scholar 

  8. G. S. Park, J. J. Choi, S. Y. Park, et al., Phys. Rev. Lett., 74, No. 12, 2399 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. R. Chu, H. Y. Chen, C. L. Hung, et al., Phys. Rev. Lett., 81, 4760 (1998).

    Article  ADS  Google Scholar 

  10. M. Garven, J. P. Calame, B. G. Danly, et al., IEEE Trans. Plasma Sci., 30, 885 (2002).

    Article  Google Scholar 

  11. D. E. Pershing, K. T. Nguyen, J. P. Calame, et al., IEEE Trans. Plasma Sci., 32, 947 (2004).

    Article  Google Scholar 

  12. S. Y. Park, R. H. Kyser, C. M. Armstrong, et al., IEEE Trans. Plasma Sci., 18, 321 (1990).

    Article  ADS  Google Scholar 

  13. C. S. Kou, S. G. Chen, L. R. Barnett, et al., Phys. Rev. Lett., 70, 924 (1993).

    Article  ADS  Google Scholar 

  14. G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, in: Digest 22nd Int. Conf. on Infrared and Millimeter Waves, Wintergreen, USA, 1997, p. 289.

  15. S. J. Cooke and G. G. Denisov, IEEE Trans. Plasma Sci., 26, No. 3, 519 (1998).

    Article  Google Scholar 

  16. G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, IEEE Trans. Plasma Sci., 26, No. 3, 508 (1998).

    Article  Google Scholar 

  17. G. G. Denisov, V. L. Bratman, A. W. Cross, et al., Phys. Rev. Lett., 81, No. 25, 5680 (1998).

    Article  ADS  Google Scholar 

  18. A. L. Gol’denberg, G. S. Nusinovich, and A. B. Pavelyev, in: Gyrotrons [in Russian], Inst. Appl. Phys., Gorky (1980), p. 91.

    Google Scholar 

  19. N. F. Kovalev, I. M. Orlova, and M. I. Petelin, Radiophys. Quantum Electron., 11, No. 5, 449 (1968).

    Article  Google Scholar 

  20. G. Burt, S. V. Samsonov, K. Ronald, et al., Phys. Rev. E, 70, No. 4, 046402 (2004).

  21. D. B. McDermott, N. C. Luhmann, A. Kupiszewski, Jr., and H. R. Jory, Phys. Fluids, 26, 1936 (1983).

    Article  MATH  ADS  Google Scholar 

  22. M. J. Rhee and W. W. Destler, Phys. Fluids, 17, 1574 (1974).

    Article  Google Scholar 

  23. S. V. Samsonov, V. L. Bratman, G. G. Denisov, et al., in: Proc. 12th Symp. on High Current Electronics, Tomsk, Russia, 2000, p. 403.

  24. V. L. Bratman, A. W. Cross, G. G. Denisov, et al., Phys. Rev. Lett., 84, No. 12, 2746 (2000).

    Article  ADS  Google Scholar 

  25. V. L. Bratman, A. W. Cross, G. G. Denisov, et al., in: Proc. 5th Int. Workshop “Strong Microwaves in Plasmas”, Nizhny Novgorod, Russia, 2002, p. 46.

  26. V. L. Bratman, G. G. Denisov, V. N. Manuilov, et al., in: Proc. 26th Int. Conf. on Infrared and Millimeter Waves, Toulouse, France, 2001, p. 5.

  27. V. L. Bratman, G. G. Denisov, S. V. Samsonov, et al., in: Abstr. of 3rd IEEE Int. Vacuum Electronics Conf., Monterey, USA, 2002, p. 359.

  28. W. He, C. G. Whyte, A. W. Cross, et al., in: Proc. 6th Int. Workshop “Strong Microwaves in Plasmas,” Nizhny Novgorod, Russia, 2005, p. 125.

  29. Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, No. 1, 67 (2004).

    Article  Google Scholar 

  30. S. V. Samsonov, G. G. Denisov, V. L. Bratman, et al., IEEE Trans. Plasma Sci., 32, No. 3, 884 (2004).

    Article  Google Scholar 

  31. G. G. Denisov, Yu, V. Bykov, A. G. Eremeev, et al., in: Digest of the Joint 30th Int. Conf. on Infrared and Millimeter Waves and 13th Int. Conf. on Terahertz Electronics, Williamsburg, USA, 2005, p. 28.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 2, pp. 104–117, February 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratman, V.L., Denisov, G.G., Samsonov, S.V. et al. High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated waveguides. Radiophys Quantum Electron 50, 95–107 (2007). https://doi.org/10.1007/s11141-007-0009-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-007-0009-9

Keywords

Navigation