Skip to main content

Advertisement

Log in

Experimental Study of the Pulsed Terahertz Gyrotron with Record-Breaking Power and Efficiency Parameters

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We describe the results of studying experimentally a high-power (hundreds of kilowatts) pulsed (pulse duration of about 30 μs) subterahertz gyrotron with the generation frequency corresponding to one of the atmosphere transparency windows. The gyrotron with an operating frequency of 0.67 THz, a power of more than 200 kW and an efficiency of 20–25% was used in the experiments on ignition of a localized discharge in a plasma. The paper presents the data about measurements of the temperature field of the emitter, calorimetric measurements of the power and efficiency of the gyrotron, and the design of the quasioptical converter of radiation to a narrow wave beam. The first experiments with the terahertz discharge in a focused wave beam of the gyrotron are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Mueller, Industrial Physicist, 27, 29 (2003).

    Google Scholar 

  2. P. H. Siegel, IEEE Trans. Microwave Theory Tech., 50, 910 (2002).

    Article  ADS  Google Scholar 

  3. N. I. Zaitsev, T. B. Pankratova, M. I. Petelina, and V. A. Flyagin, Radiotekh. Élektron., 19, No. 5, 1056 (1974).

    Google Scholar 

  4. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins Univ. Press, Baltimore (2004).

    Google Scholar 

  5. J. H. Booske, Phys. Plasmas, 15, No. 5, 055502 (2008).

    Article  ADS  Google Scholar 

  6. Z. Huang and K.-J. Kim, Phys. Rev. ST Accel. Beams, 10, 034801 (2007).

    Article  ADS  Google Scholar 

  7. I. B. Bott, Proc. IEEE, 52, No. 3, 330 (1964).

    Article  Google Scholar 

  8. V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, Int. J. Infrared Millimeter Waves, 4, No. 4, 629 (1983).

    Article  ADS  Google Scholar 

  9. M. Yu. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, Phys. Rev. Lett., 100, 015101 (2008).

    Article  ADS  Google Scholar 

  10. T. Idehara, H. Tsuchiya, O. Watanabe, et al., Int. J. Infrared Millimeter Waves, 27, No. 3, 319 (2006).

    Article  ADS  Google Scholar 

  11. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, 245101 (2009).

    Article  ADS  Google Scholar 

  12. V. Bratman, M. Glyavin, T. Idehara, et al., IEEE Trans. Plasma Sci.,37, 36 (2009).

    Google Scholar 

  13. V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys., 108, 063304 (2010).

    Article  ADS  Google Scholar 

  14. A. V. Sidorov, V. L. Bratman, M. Yu. Glyavin, et al., in: IEEE Int. Conf. Pulsed Plasma and Plasma Sci., San Francisco, California, USA, June 16–21, 2013, art. no. 10 E-4.

  15. M. Yu. Glyavin, A. G. Luchinin, V. N. Manuilov, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 666 (2011).

  16. R. Pu, G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, Phys. Plasmas, 18, 023107 (2011).

    Article  ADS  Google Scholar 

  17. M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, et al., Appl. Phys. Lett., 101, 153503 (2012).

    Article  ADS  Google Scholar 

  18. G. S. Nusinovich, P. Sprangle, C. A. Romero-Talamas, and V. L. Granatstein, J. Appl. Phys., 109, 083303 (2011).

    Article  ADS  Google Scholar 

  19. G. S. Nusinovich, P. Sprangle, V. E. Semenov, et al., J. Appl. Phys., 111, 124912 (2012).

    Article  ADS  Google Scholar 

  20. K. Sakamoto, Fusion Sci. Technol., 52, 145 (2007).

    Google Scholar 

  21. S. N. Vlasov, L. I. Zagryadskaya, and M. I.Petelin, Radio Eng. Electron. Phys., 20, 14 (1975).

    ADS  Google Scholar 

  22. M. A. Moiseev, L. L. Nemirovskaya, V. E. Zapevalov, and N. A. Zavolsky, Int. J. Infrared Millimeter Waves, 18, No. 11, 2117 (1997).

    Article  ADS  Google Scholar 

  23. M. Botton, T. M. Antonsen, B. Levush, et al., IEEE Trans. Plasma Sci., 26, 882 (1988).

    Article  ADS  Google Scholar 

  24. W. Kasparek and G. Müller, Int. J. Electron., 64, 5 (1988).

    Article  Google Scholar 

  25. A. Luchinin, and G. Nusinovich, in: Gyrotrons, Inst. Appl. Phys., Gorky (1989), p. 64.

  26. M. Yu. Glyavin, S. V. Golubev, V. G. Zorin, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 622 (2013).

  27. V. I. Belousov, M. M. Oficerov, V. Yu. Plachotnik, and Yu. V. Rodin, J. Comm. Tech. Electr., 3, 93 (1996).

    Google Scholar 

  28. http://www.tydexoptics.com/ru/products/thz_optics/thz_materials/.

  29. Y. -S. Jin, G. -J. Kim, and S. -G. Jeon, J. Korean Phys. Soc., 49, 513 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Glyavin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 8–9, pp. 550–561, August–September 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glyavin, M.Y., Luchinin, A.G., Bogdashov, A.A. et al. Experimental Study of the Pulsed Terahertz Gyrotron with Record-Breaking Power and Efficiency Parameters. Radiophys Quantum El 56, 497–507 (2014). https://doi.org/10.1007/s11141-014-9454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9454-4

Keywords

Navigation