Skip to main content
Log in

One-Dimensional Self-Consistent Model of the Sprite/Halo Influence on the Mesosphere Chemistry

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The influence of the high-altitude discharges (sprites and halos) on the mesospheric chemical composition and the photon radiation, which is typical of the discharges, is analyzed. A onedimensional self-consistent model of the high-altitude discharges for altitudes of 60 to 90 km, which is the extension of the one-point sprite model [1], is developed. The electric field at the mesospheric altitudes from the noncompensated discharge in a cloud is specified in the dipole approximation with allowance for the features of the current flow in the lightning channel when the cloud–Earth discharge is developed in the troposphere. Perturbation of the ion, electron, and neutral-component densities from the sprite flare and the photon-emission intensity for the sprite and halo is analyzed. The threshold value of the dipole moment, which is required for the sprite initiation, is obtained. The dependence of the size of the diffuse region of the sprite on the dipole moment of the noncompensated electric discharge in the cloud is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Evtushenko and E. A. Mareev, Radiophys. Quantum Electron., 54, No. 2, ?? (2011)

  2. E. V. Mishin and G. M. Milikh, Space Sci. Rev., 137, Nos. 1–4, 473 (2008)

    Article  ADS  Google Scholar 

  3. O. A.Van der Velde, W. A. Lyons, and T. E. Nelson, J. Geophys. Res. D, 112, No. 20, D20104 (2007).

    Article  ADS  Google Scholar 

  4. V.P. Pasko, J. Geophys. Res. A, 115, A00E35 (2010).

  5. V. P. Pasko and H. C. Stenbaek-Nielsen, Geophys. Res. Lett., 29, No. 10, 1440 (2002).

    ADS  Google Scholar 

  6. T. Adachi, H. Fukunishi, and Y. Takahashi, Geophys. Res. Lett., 33, No. 17, L17803 (2006).

    Article  ADS  Google Scholar 

  7. A. B. Chen, C.-L. Kuo, and L. Yi-Jen, J. Geophys. Res. A, 113, A08306 (2008).

    ADS  Google Scholar 

  8. E. Mishin, Geophys. Res. Lett., 24, No. 15, 1919 (1997).

    Article  ADS  Google Scholar 

  9. N. V. Smirnova, A. N. Lyakhov, and S. I. Kozlov, Int. J. Geomagn. Aeron., 3, No. 3, 281 (2003).

    Google Scholar 

  10. D. D. Sentman, H. C. Stenbaek-Nielsen, and M. G. McHarg, J. Geophys. Res. D, 113, No. 11, D11112 (2008).

    Article  ADS  Google Scholar 

  11. F. J. Gordillo-Vazquez, J. Phys. D. Appl. Phys., 41, No. 23, 4016 (2008).

    Article  Google Scholar 

  12. M. Hayakawa, D. I. Iudin, and E. A. Mareev, Phys. Plasmas, 14, 042902 (2007).

    Article  ADS  Google Scholar 

  13. F. J. Gordillo-Vazquez, J. Geophys. Res. A, 115, A00E25 (2010)

    Article  ADS  Google Scholar 

  14. N. Liu, J. Geophys. Res. A, 117, No. 3, A03308 (2012).

    ADS  Google Scholar 

  15. A. A. Evtushenko, Int. Union Geod. Geophys., Perugia (2007).

  16. A. A. Evtushenko, F. A. Kuterin, and E. A. Mareev, Fiz. Atmos. Okeana, 49, No. 5, 1 (2013).

    Google Scholar 

  17. T. Adachi, Y. Hiraki, and K. Yamamoto, J. Phys. D. Appl. Phys., 41, No. 23, 234010 (2008).

    Article  ADS  Google Scholar 

  18. S. A.Cummer, J. Atmos. Solar-Terr. Phys., 65, No. 5, 499 (2003).

    Article  ADS  Google Scholar 

  19. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol., 14, 722 (2005).

    Article  ADS  Google Scholar 

  20. V. A. Rakov and M. A. Uman, Lightning: physics and effects, Cambridge University Press (2002), p. 687

    Google Scholar 

  21. A. A. Krivolutskiy and A. I. Repnev, Influence of the Space Factors on the Earth’s Ozonosphere [in Russian], GEOS, Moscow (2009), p. 384.

    Google Scholar 

  22. V.P. Pasko, U. S. Inan, and T. F. Bell, J. Geophys. Res. A, 102, No. 3, 4529 (1997).

    Article  ADS  Google Scholar 

  23. http://www.cesm.ucar.edu/models/cesm1.1/cam/.

  24. E. M. Wescott, H. C. Stenbaek-Nielsen, and D. D. Sentman, J. Geophys. Res. A, 106, No. 6, 10467 (2001).

    Article  ADS  Google Scholar 

  25. E. A. Mareev, S. A. Yashunin, and S. S. Davydenko, Geophys. Res. Lett., 35, No. 15, L15810 (2008).

    Article  ADS  Google Scholar 

  26. E. A. Mareev and S. V. Anisimov, 12th Int. Conf. Atmos. Electr., (2003), p. 797.

  27. I. A Kossyi, A. Yu Kostinskiy, and A. A Matveev, Proc. IOFAN, 47, 37 (1994)

    Google Scholar 

  28. A Mitra, Influence of the Solar Flares on the Earth’s Ionosphere [Russian translation], Mir, Moscow (1997), p. 370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Evtushenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 56, Nos. 11–12, pp. 947–967, November–December 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtushenko, A.A., Kuterin, F.A. One-Dimensional Self-Consistent Model of the Sprite/Halo Influence on the Mesosphere Chemistry. Radiophys Quantum El 56, 853–871 (2014). https://doi.org/10.1007/s11141-014-9488-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-014-9488-7

Keywords

Navigation