Skip to main content
Log in

Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0.11 kW was achieved with an efficiency of up to 17% in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 106 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Zaytsev, T. B. Pankratova, M. I.Petelin, and V. A. Flyagin, Radio. Eng. Electron. Phys., 19, 95 (1974).

    Google Scholar 

  2. G. S.Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins Univ. Press, Baltimore, M.D. (2004), p. 335.

    Google Scholar 

  3. J. H. Booske, Phys. Plasmas, 15, No. 5, 055502 (2008).

    Article  ADS  Google Scholar 

  4. Z. Huang and K. -J.Kim, Phys. Rev. ST Accel. Beams, 034801 (2007).

  5. T. Idehara, S. Mitsudo, S. Sabchevski, et al., Vacuum, 62, Nos. 2–3, 133 (2001).

  6. M.Yu.Glyavin, A.G. Luchinin, and G.Yu.Golubiatnikov, Phys. Rev. Lett., 100, No. 1, 015101 (2008).

    Article  ADS  Google Scholar 

  7. V. L. Bratman, Yu.K.Kalynov, and V. N.Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009).

    Article  ADS  Google Scholar 

  8. M.Yu.Glyavin, A.G. Luchinin, G. S.Nusinovich, et al., Appl. Phys. Lett., 101, 153503 (2012).

    Article  ADS  Google Scholar 

  9. J. H. Booske, R. J.Dobbs, C.D. Joye, et al., IEEE Trans. Terahertz Sci. Technol., No. 1, 54 (2011).

  10. T. Idehara and S.P. Sabchevski, J. Infrared, Millimeter and Terahertz Waves, 33, No. 7, 667 (2012).

    Article  Google Scholar 

  11. N.P.Venediktov, V.V.Dubrov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 53, No. 4, 237 (2010).

    Article  ADS  Google Scholar 

  12. http://www.jastec-inc.com/e_products_nmr/detail24.html.

  13. S. O. Kuznetsov and V. I.Malygin, Int. J. Infrared Millimeter Waves, 12, No. 11, 1241 (1991).

    Article  ADS  Google Scholar 

  14. A. V.Chirkov, G. G. Denisov, and N. L. Aleksandrov, Opt. Commun., 115, 449 (1995).

    Article  ADS  Google Scholar 

  15. A. V.Chirkov and G. G. Denisov, Int. J. Infrared Millimeter Waves, 21, No. 1, 83 (2000).

    Article  Google Scholar 

  16. V. Bratman, M. Glyavin, T. Idehara, et al., IEEE Trans. Plasma Sci., 37, No. 1, 36 (2009).

    Article  ADS  Google Scholar 

  17. M. Thumm, KIT-SR 7693, KIT Scientific Publishing, Karlsruhe (2014), p. 172.

    Google Scholar 

  18. M.Yu.Glyavin, T. Idehara, and S.P. Sabchevski, IEEE Trans. Terahertz Sci. Technol., 5, No. 5, 788 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Glyavin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 9, pp. 709–719, September 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyavin, M.Y., Morozkin, M.V., Tsvetkov, A.I. et al. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW. Radiophys Quantum El 58, 639–648 (2016). https://doi.org/10.1007/s11141-016-9636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9636-3

Keywords

Navigation