Skip to main content
Log in

Gyrotron Frequency Stabilization by a Weak Reflected Wave

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The possibility of reducing the radiation frequency fluctuations by a factor of 3–5 using a nonresonant or highly resonant weakly reflecting load for the gyrotrons employed in controlled-fusion facilities is shown. The ranges of system parameters where the frequency stabilization is most effective were identified both analytically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Litvak, G. Denisov, V.Myasnikov, et al., J. Infrared MM & THz Waves, 32, No. 3, 337 (2011).

    Article  Google Scholar 

  2. T. Idehara, S. Mitsudo, and I.Ogawa, IEEE Trans. Plasma Sci., 32, No. 3, 910 (2004).

    Article  ADS  Google Scholar 

  3. G.Yu.Golubiatnikov, A.F. Krupnov, L.V. Lubyako, et al., Tech. Phys. Lett., 32, No. 8, 650 (2006).

    Article  ADS  Google Scholar 

  4. M. Glyavin, A. Luchinin, and M. Morozkin, Rev. Sci. Instr., 83. 074706 (2012).

  5. P. S. Landa, Nonlinear Oscillations and Waves [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  6. Yu.V.Novozhilova, N.M.Ryskin, and S.A.Usacheva, Tech. Phys., 56, No. 9, 1255 (2011).

    Article  Google Scholar 

  7. I.P. Polovkov, Frequency Stabilization of Microwave Oscillators by an External Resonant Cavity [in Russian], Sovetskoye Radio, Moscow (1967).

    Google Scholar 

  8. G. G.Kozorezov, in: Vacuum Microwave Electronics: Collected Review Papers [in Russian], Inst. Appl. Phys., RAS, Nizhny Novgorod (2002), p. 67.

  9. G. M.Kazakevich and Y.U. Jeong, Nucl. Instrum. Meth. Phys. Res. Sec. A, A528, No. 1/2, 115 (2004).

    Article  ADS  Google Scholar 

  10. A. S. Ishchenko, Yu. V. Novozhilova, and M. I.Petelin, Radiophys. Quantum Electron., 49, No. 6, 485 (2006).

    Article  ADS  Google Scholar 

  11. Yu.V.Novozhilova and A. S. Ischenko, J. Infrared MM & THz Waves, 32, No. 12, 1394 (2011).

    Article  Google Scholar 

  12. H. Li and N.B.Abraham, IEEE J. Quant. Electron., 25, No. 8, 1782 (1989).

    Article  ADS  Google Scholar 

  13. A. N.Oraevsky, A.V.Yarovitsky, and V. L.Velichansky, Quantum Electron., 31, No. 10, 897 (2001).

    Article  ADS  Google Scholar 

  14. T.M.Antonsen, S.Y.Cai, and G. S.Nusinovich, Phys. Fluids B, 4, No. 12, 4131 (1992).

    Article  ADS  Google Scholar 

  15. M. Airila, O.Dumbrajs, P.Kall, and B. Piosczyk, Nucl. Fusion, 43, No. 11, 1454 (2003).

    Article  ADS  Google Scholar 

  16. N. S. Ginzburg, M.Yu.Glyavin, N.A. Zavol’skii, et al., Tech. Phys. Lett., 24, No. 6, 436 (1998).

    Article  ADS  Google Scholar 

  17. O.Dumbrajs, T. Idehara, S.Watanabe, et al., IEEE Trans. Plasma Sci., 32, No. 3, 899 (2004).

    Article  ADS  Google Scholar 

  18. E. Borie, IEEE Trans. Microwave Theory and Techniques, 49, No. 7, 1342 (2001).

    Article  ADS  Google Scholar 

  19. A.Grudiev and K. Schunemann, Int. J. Infrared & MM Waves, 24, No. 4, 429 (2003).

    Article  Google Scholar 

  20. M.Yu.Glyavin and V.E. Zapevalov, Int. J. Infrared & MM Waves, 19, No. 11, 1499 (1998).

    Article  Google Scholar 

  21. O.Dumbrajs, J. Infrared MM & THz Waves, 31, No. 8, 892 (2010).

    Google Scholar 

  22. Yu.V. Novozhilova, N.M.Ryskin, and M.M. Chumakova, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 20, No. 6, 136 (2012).

  23. G. G. Denisov, in: Proc. 9th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod, Russia, 2014, p.7.

  24. G. M. Batanov, L. V.Kolik, Yu. V. Novozhilova, et al., Tech. Phys., 46, No. 5, 595 (2001).

    Article  Google Scholar 

  25. M. I. Rabinovich and D. I.Trubetskov, Introduction to the Theory of Oscillations and Waves [in Russian], Research Center “Regular and Chaotic Dynamics,” Izhevsk, 2000.

  26. V. L.Bakunin, G.G.Denisov, and Yu.V.Novozhilova, Tech. Phys. Lett., 40, No. 5, 382 (2014).

    Article  ADS  Google Scholar 

  27. W.Kasparek, M. I.Petelin, D.Yu. Shchegolkov, et al., Nucl. Fusion, 48, No. 5, 054010 (2008).

    Article  ADS  Google Scholar 

  28. Y. Danilov, G. Denisov, M.Khozin, et al., IEEE Trans. Plasma Sci., 42, No. 6, 1685 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Novozhilova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 9, pp. 747–758, September 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyavin, M.Y., Denisov, G.G., Kulygin, M.L. et al. Gyrotron Frequency Stabilization by a Weak Reflected Wave. Radiophys Quantum El 58, 673–683 (2016). https://doi.org/10.1007/s11141-016-9639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9639-0

Keywords

Navigation