Skip to main content
Log in

Analysis of the Nonlinear Spectrum of Intense Sea Wave with the Purpose of Extreme Wave Prediction

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a method for the analysis of groups of unidirectional waves on the surface of deep water, which is based on spectral data of the scattering problem in the approximation of a nonlinear Schrödinger equation. The main attention is paid to the robustness and accuracy of the numerically obtained spectral data. Various methods of choosing the wave number of the carrier wave, which rely on the analysis of the local Fourier transform and the zero-crossing wave analysis, are considered. The most robust wave numbers have been chosen on the basis of two model examples. A method for improving the accuracy of the soliton amplitude prediction, which uses the “feedback” in solving the associated scattering problem, is proposed. In the wave steepness range from 0.15 to 0.30, the accuracy of determining the amplitude of the soliton group by this technique lies in a range of 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett., 19, No. 19, 1095 (1967).

    Article  ADS  Google Scholar 

  2. V. E. Zakharov and A. B. Shabat, J. Exp. Theor. Phys., 34, No. 1, 62 (1971).

    ADS  Google Scholar 

  3. V. E. Zakharov and A. B. Shabat, J. Exp. Theor. Phys., 37, No. 5, 823 (1973).

    ADS  Google Scholar 

  4. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math., 53, No. 4, 249 (1974).

    Article  Google Scholar 

  5. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons. The Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  6. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).

    Book  MATH  Google Scholar 

  7. A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, Academic Press, Oxford (2010).

    MATH  Google Scholar 

  8. S. Randoux, P. Suret, and G. A. El, Nature Sci. Rep., 6, 292238 (2016).

    Google Scholar 

  9. L. L. Frumin, A. A. Gelash, and S. K. Turitsyn, Phys. Rev. Lett., 118, 223901 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. R. Osborne and M. Petti, Phys. Fluids, 6, No. 5, 1727 (1994).

    Article  ADS  Google Scholar 

  11. M. Bruhl and H. Oumeraci, Appl. Ocean Res., 61, 81 (2016).

    Article  Google Scholar 

  12. A. A. Kurkin and E. N. Pelinovsky, Rogue Waves: Facts, Theory, and Modeling [in Russian], State Technical Univ. of Nizhny Novgorod, Nizhny Novgorod (2004).

    Google Scholar 

  13. C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean, Springer-Verlag, Berlin, Heidelberg (2009).

    MATH  Google Scholar 

  14. A. Slunyaev, I. Didenkulova, and E. Pelinovsky, Contemp. Phys., 52, No. 6, 571 (2011).

    Article  ADS  Google Scholar 

  15. A. V. Slunyaev, Moscow Univ. Phys, Bull., 72, No. 3, 236 (2017).

    Article  ADS  Google Scholar 

  16. V. E. Zakharov, J. Appl. Mech. Tech. Phys., 9, 190 (1968).

    Article  ADS  Google Scholar 

  17. T. B. Benjamin and J. E. Feir, J. Fluid Mech., 27, No. 3, 417 (1967).

    Article  ADS  Google Scholar 

  18. V. E. Zakharov and L. A. Ostrovsky, Physica D, 238, No. 5, 540 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Onorato, T. Waseda, A. Toffoli, et al., Phys. Rev. Lett., 102, No. 11, 114502 (2009).

    Article  ADS  Google Scholar 

  20. L. Shemer and A. Sergeeva, J. Geophys. Res., 114, No. C1, C01015 (2010).

    ADS  Google Scholar 

  21. L. Shemer, A. Sergeeva, and D. Liberzon, J. Geophys. Res., 115, No. C12, C12039 (2010).

    Article  ADS  Google Scholar 

  22. L. Shemer, A. Sergeeva, and A. Slunyaev, Phys. Fluids, 22, No. 1, 016601 (2010).

    Article  ADS  Google Scholar 

  23. M. Onorato, A. R. Osborne, M. Serio, and S. Bertone, Phys. Rev. Lett., 86, No. 25, 5831 (2001).

    Article  ADS  Google Scholar 

  24. E. N. Pelinovsky, A. V. Slunyaev, T. G. Talipova, and K. Kharif, Radiophys. Quantum Electron., 46, No. 7, 451 (2003).

    Article  ADS  Google Scholar 

  25. M. Onorato, S. Residori, U. Bortolozzo, et al., Phys. Rep., 528, No. 2, 47 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Onorato, D. Proment, G. El, et al., Phys. Lett. A, 380, No. 39, 3173 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. A. E. M. Janssen, J. Phys. Oceanogr., 33, No. 4, 863 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. V. Slunyaev and A. V. Sergeeva, JETP Lett., 94, No. 10, 779 (2011).

    Article  ADS  Google Scholar 

  29. S. Ponce de Leon and C. Guedes, Ocean Modelling, 81, 78 (2014).

    Article  ADS  Google Scholar 

  30. A. Slunyaev, A. Sergeeva, and E. Pelinovsky, Physica D, 303, 18 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. V. Slunyaev and A. V. Kokorina, J. Ocean Eng. Mar. Energy, 3, No. 4, 395 (2017).

    Article  Google Scholar 

  32. V. P. Ruban, JETP Lett., 97, No. 12, 686 (2013).

    Article  ADS  Google Scholar 

  33. E. van Groesen, P. Turnip, and R. Kurnia, Ocean Eng. Mar. Energy, 3, No. 3, 233 (2017).

    Article  Google Scholar 

  34. E. van Groesen and A. P. Wijaya, J. Ocean Eng. Mar. Energy, 3, No. 4, 325 (2017).

    Article  Google Scholar 

  35. A. L. Islas and C. M. Schober, Phys. Fluids, 17, No. 3, 031701 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. R. Osborne, M. Onorato, and M. Serio, in: Proc. 14th Aha Huliko’a Winter Workshop, 25–28 January 2005, Honolulu, Hawaii, 2005.

  37. A. Slunyaev, E. Pelinovsky, and C. Guedes Soares, Appl. Ocean Res., 27, 12 (2005).

    Article  Google Scholar 

  38. C. M. Schober, Eur. J. Mech. B: Fluids, 25, 602 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Slunyaev, Eur. J. Mech. B: Fluids, 25, 621 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. V. Slunyaev, Acoustics of Inhomogeneous Media, in: Proc. Workshop headed by S. A. Rybak [in Russian], No. 9, 228 (2008).

  41. R. H. J. Grimshaw and A. Tovbis, Proc. Math. Phys. Eng. Sci., 469, 20130094 (2013).

    Article  Google Scholar 

  42. W. Cousins and T. P. Sapsis, Phys. Rev. E, 91, No. 6, 063204 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  43. C. M. Schober and A. Calini, in: E. Pelinovsky and C. Kharif, ed., Extreme Waves, Springer, Cham Heidelberg, New York, Dordrecht, London (2016), p. 1.

    Google Scholar 

  44. B. V. Divinsky, B. V. Levin, L. I. Lopatukhin, et al., Earth Sci., 395, No. 3, 438 (2004).

    Google Scholar 

  45. A. I. Dyachenko and V. E. Zakharov, JETP Lett., 88, 307 (2008).

    Article  ADS  Google Scholar 

  46. A. V. Slunyaev, J. Exp. Teor. Phys., 109, No. 4, 676 (2009).

    Article  ADS  Google Scholar 

  47. A. I. Dyachenko, D. I. Kachulin, and V. E. Zakharov, Nat. Hazards Earth Syst. Sci., 13, No. 12, 3205 (2013).

    Article  ADS  Google Scholar 

  48. A. Slunyaev, G. F. Clauss, M. Klein, and M. Onorato, Phys. Fluids, 25, No. 6, 067105 (2013).

    Article  ADS  Google Scholar 

  49. A. Slunyaev, M. Klein, and G. F. Clauss, Phys. Fluids, 29, No. 4, 047103 (2017).

    Article  ADS  Google Scholar 

  50. A. V. Slunyaev, J. Exp. Theor. Phys., 101, No. 5, 926 (2005).

    Article  ADS  Google Scholar 

  51. K. Trulsen, Waves in Geophysical Fluids: Tsunamis, Rogue Waves, Internal Waves and Internal Tides, in: J. Grue and K. Trulsen, eds., CISM Courses and Lectures No. 489, Springer, Wein, New York (2006).

    Google Scholar 

  52. A. Slunyaev, E. Pelinovsky, and C. Guedes Soares, J. Offshore Mech. Arctic. Eng., 136, No. 1, 011302 (2014).

    Article  Google Scholar 

  53. H. H. Akmediev and A. Ankevich, Solitons. Nonlinear Pulses and Beams [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  54. J. M. Soto-Crespo, N. Devine, and N. Akhmediev, Phys. Rev. Lett., 116, No. 10, 103901 (2016).

    Article  ADS  Google Scholar 

  55. A. Slunyaev, C. Kharif, E. Pelinovsky, and T. Talipova, Physica D, 173, 77 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  56. A. V. Slunyaev, Izv. Akad. Inzhen. Nauk A. M. Prokhorova, 14, 41 (2005).

    Google Scholar 

  57. E. A. Kuznetsov, Dokl. Akad. Nauk, 236, No. 3, 575 (1977).

    ADS  Google Scholar 

  58. Y.-Ch. Ma, Stud. Appl. Math., 60, No. 1, 43 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Tajiri and Y. Watanabe, Phys. Rev. E, 57, No. 3, 3510 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  60. D. H. Peregrine, J. Austral. Math. Soc. Ser. B, 25, No. 1, 16 (1983).

    Article  MathSciNet  Google Scholar 

  61. S. R. Massel, Ocean Surface Waves: Their Physics and Prediction, World Scientific Publ., Singapore (1996).

    Google Scholar 

  62. E. Pelinovsky, O. Polukhina, and A. Kurkin, Eur. Phys. J. Special Topics, 185, 35 (2010).

    Article  ADS  Google Scholar 

  63. V. I. Shrira and A. V. Slunyaev, Phys. Rev. E, 89, No. 4, 041002 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Slunyaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 1, pp. 1–23, January 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slunyaev, A.V. Analysis of the Nonlinear Spectrum of Intense Sea Wave with the Purpose of Extreme Wave Prediction. Radiophys Quantum El 61, 1–21 (2018). https://doi.org/10.1007/s11141-018-9865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9865-8

Navigation