Skip to main content
Log in

Self-Trapping of Extreme Light

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We use the qualitative, simplified modeling, and approximately self-consistent nonlinear-optical approaches to explain the nature of the regime under which relativistically intense laser pulses propagate in a plasma to distances exceeding the Rayleigh length considerably, as was found earlier by numerical simulation. Such a regime requires certain matching of the size of the laser spot with the plasma density and the laser pulse intensity. It corresponds to the so-called self-trapping of radiation, which has been well known since the 1960s for the quadratic nonlinearity of the medium’s dielectric permittivity and, as has been established, takes place for the relativistic plasma nonlinearity as well. The case of the plasma with a near-critical density is considered as it is of greatest interest in the context of practical applications. Synchronization of chaotic motions of the electrons accelerated by the laser pulse in the self-trapping regime is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tajima and J.M.Dawson, Phys. Rev. Lett., 43, No. 4, 267–270 (1979). https://doi.org/10.1103/PhysRevLett.43.267

    Article  ADS  Google Scholar 

  2. E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Trans. Plasma Sci., 24, No. 2, 252–288 (1996). https://doi.org/10.1109/27.509991

    Article  ADS  Google Scholar 

  3. A. Pukhov and J.Meyer-ter-Vehn, Appl. Phys. B, 74, 355–361 (2002). https://doi.org/10.1007/s003400200795

    Article  ADS  Google Scholar 

  4. V.Yu.Bychenkov, M.G. Lobok, V. F. Kovalev, and A. V. Brantov, Plasma Phys. Contr. Fus., 61, No. 12, 124004 (2019). https://doi.org/10.1088/1361-6587/ab5142

  5. M. G. Lobok, A. V. Brantov, and V.Yu. Bychenkov, Phys. Plasmas, 26, 123107 (2019). https://doi.org/10.1063/1.5125968

    Article  ADS  Google Scholar 

  6. V. I. Talanov, Radiophys., 7, No. 3, 254–255 (1964).

    Google Scholar 

  7. R. Y. Chiao, E. Garmire, and C. Townes, Phys. Rev. Lett., 13, 479–482 (1964). https://doi.org/10.1103/PhysRevLett.13.479

    Article  ADS  Google Scholar 

  8. S.A.Akhmanov, A. P. Sukhorukov, and R.V.Khokhlov, Sov. Phys. JETP, 23, No. 6, 1025–1033 (1966).

    ADS  Google Scholar 

  9. S. Gordienko and A. Pukhov, Phys. Plasmas, 12, 043109 (2005). https://doi.org/10.1063/1.1884126

    Article  ADS  Google Scholar 

  10. W. Lu, M. Tzoufras, C. Joshi, et al., Phys. Rev. Spec.: Top.-Accel. Beams, 10, 061301 (2007). https://doi.org/10.1103/PhysRevSTAB.10.061301

  11. P. E. Masson-Laborde, M. Z. Mo, AAli, et al., Phys. Plasmas, 21, 123113 (2014). https://doi.org/10.1063/1.4903851

  12. M. G. Lobok, D. A. Gozhev, A.V.Brantov, and V.Yu.Bychenkov, Plasma Phys. Contr. Fus., 60, No. 8, 084010 (2018). https://doi.org/10.1088/1361-6587/aaca79

  13. A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, et al., Phys. Rev. A, 45, 5830–5845 (1992). https://doi.org/10.1103/PhysRevA.45.5830

    Article  ADS  Google Scholar 

  14. M. D. Feit, A.M.Komashko, S. L. Musher, et al., Phys.Rev. E, 57, 7122–7125 (1998). https://doi.org/10.1103/PhysRevE.57.7122

    Article  ADS  Google Scholar 

  15. A. Komashko, S. Musher, A. Rubenchik, et al., JETP Lett., 62, No. 11, 860–865 (1995).

    ADS  Google Scholar 

  16. M.D. Feit, J.C.Garrison and A.M. Rubenchik, Phys.Rev. E, 56, No. 3, R2394–R2397 (1997). https://doi.org/10.1103/PhysRevE.56.R2394

    Article  ADS  Google Scholar 

  17. A. V. Borovsky, A. L. Galkin, and O.B. Shiryaev, and T. Auguste, Laser Physics at Relativistic Intensities, Springer, New York (2003).

    Book  Google Scholar 

  18. L. A. Abramyan, A.G. Litvak, V. A. Mironov, and A.M. Sergeev, Sov. Phys. JETP, 75, 978–982 (1992).

    Google Scholar 

  19. T. Zh. Esirkepov, F. F. Kamenets, S. V. Bulanov, and N.M.Naumova, JETP Lett., 68, No. 1, 36– 41 (1998). https://doi.org/10.1134/1.567817

    Article  ADS  Google Scholar 

  20. F. Cattani, A. Kim, D. Anderson, and M. Lisak, Phys. Rev. E, 64, 016412 (2001). https://doi.org/10.1103/PhysRevE.64.016412

    Article  ADS  Google Scholar 

  21. A. Kim, M. Tushentsov, F. Cattani, et al., Phys. Rev. E, 65, 036416 (2002). https://doi.org/10.1103/PhysRevE.65.036416

    Article  ADS  Google Scholar 

  22. G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, Phys. Fluids, 30, 526–532 (1987). https://doi.org/10.1063/1.866349

    Article  ADS  Google Scholar 

  23. V. F. Kovalev and D. V. Shirkov, Phys. Usp., 51, No. 8, 815–830. https://doi.org/10.1070/PU2008v051n08ABEH006590

  24. V. F. Kovalev and V.Yu.Bychenkov, JETP Lett., 107, No. 8, 458–463. https://doi.org/10.1134/S0021364018080118

  25. V. F. Kovalev and V.Yu.Bychenkov, Phys. Rev. E, 99, 043201 (2019). https://doi.org/10.1103/PhysRevE.99.043201

    Article  ADS  Google Scholar 

  26. S. Sen, M.A.Varshney, and D. Varshney, ISRN Opt., 2013, Nos. 1–8, 642617 (2013). https://doi.org/10.1155/2013/986924

  27. I. Kostyukov, A. Pukhov, and S. Kiselev, Phys. Plasmas, 11, No. 11, 5256–5264 (2004). https://doi.org/10.1063/1.1799371

    Article  ADS  Google Scholar 

  28. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press (2001).

  29. S. Kneip, C.McGuffey, J. L. Martins, et al., Nature Phys., 6, 980–983 (2010). https://doi.org/10.1038/nphys1789

    Article  ADS  Google Scholar 

  30. A. Rousse, K.T.Phuoc, R. Shah, et al., Phys. Rev. Lett., 93, No. 13, 135005 (2004). https://doi.org/10.1103/PhysRevLett.93.135005

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bychenkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 825–839, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychenkov, V.Y., Kovalev, V.F. Self-Trapping of Extreme Light. Radiophys Quantum El 63, 742–755 (2021). https://doi.org/10.1007/s11141-021-10093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10093-9

Navigation