Skip to main content
Log in

Comparison of the substrate dependent performance of Pt-, Au- and Ag-doped TiO2 photocatalysts in H2-production and in decomposition of various organics

  • Published:
Reaction Kinetics and Catalysis Letters Aims and scope Submit manuscript

Abstract

Pt-, Au- and Ag-deposited Degussa P25 photocatalysts [at 1% (m/m) noble metal loading] were prepared in which the noble metals are most likely to be very finely dispersed on the surface of the TiO2 nanocrystals. Deposition of noble metals increased the photocatalytic efficiency (relative to the bare photocatalyst) in the decomposition of oxalic- and formic acid, while decreased it in phenol containing systems. In H2-production, a very high quantum yield has been found for the Pt–TiO2 photocatalyst in the presence of oxalic and formic acids as sacrificial reagents, which opens the possibility for the economic use of industrial side products (e.g., oxalic- and formic acid) for photocatalytic H2-production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  2. Fujishima A, Rao TN, Tryk D (2000) J Photochem Photobiol C 1:1

    Article  CAS  Google Scholar 

  3. Oregan B, Grätzel M (1991) Nature 353:737

    Article  CAS  Google Scholar 

  4. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    Article  CAS  Google Scholar 

  5. Grätzel M (2001) Nature 414:338

    Article  Google Scholar 

  6. Bard J (1980) Science 207:4427

    Article  Google Scholar 

  7. Bolton JR (1996) Sol Energy 57:37

    Article  CAS  Google Scholar 

  8. Thomson TE, Yates JT Jr (2006) Chem Rev 106:4428

    Article  Google Scholar 

  9. Choi W, Tremin A, Hoffmann MR (1994) J Phys Chem 98:13669

    Article  Google Scholar 

  10. Choi W, Tremin A, Hoffmann MR (1994) Angew Chem Int Ed Engl 33:1091

    Article  Google Scholar 

  11. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  12. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243

    Article  CAS  Google Scholar 

  13. Kőrösi L, Dékány I (2006) Colloids Surf A 146:280

    Google Scholar 

  14. Kőrösi L, Oszkó A, Galbács G, Richardt A, Zöllmer V, Dékány I (2007) Appl Catal B 77:175

    Article  Google Scholar 

  15. Szabó-Bárdos E, Czili H, Horváth A (2003) J Photochem Photobiol A 154:195

    Article  Google Scholar 

  16. Szabó-Bárdos E, Pétervári E, El-Zein V, Horváth A (2006) J Photochem Photobiol A 184:221

    Article  Google Scholar 

  17. Kőrösi L, Papp Sz, Ménesi J, Illés E, Zöllmer V, Richardt A, Dékány I (2008) Colloids Surf A 319:136

    Article  Google Scholar 

  18. Patsoura A, Kondraides DI, Verykios XE (2006) Appl Catal B 64:171

    Article  CAS  Google Scholar 

  19. Patsoura A, Kondraides DI, Verykios XE (2007) Catal Today 124:94

    Article  CAS  Google Scholar 

  20. Sreethawong T, Suzuki Y, Yoshikawa S (2006) C R Chimie 9:307

    CAS  Google Scholar 

  21. Dubey N, Rayalu SS, Labhsetwar NK, Devotta S (2008) Int J Hydrogen Energy 33:5958

    Article  CAS  Google Scholar 

  22. Yin S, Sato T (2005) J Photochem Photobiol A 169:89

    Article  CAS  Google Scholar 

  23. Khan MA, Akhtar MS, Woo SI, Yang O-B (2008) Catal Commun 10:1

    Article  Google Scholar 

  24. Fu X, Long J, Wang X, Leung DYC, Ding Z, Wu L, Zhang Z, Li Z, Fu X (2008) Int J Hydrogen Energy 33:6484

    Article  CAS  Google Scholar 

  25. Daskalaki VM, Kondarides DI (in press) Catal Today. doi:10.1016/j.cattod.2008.11.009

  26. Chen T, Wu G, Feng Z, Hu G, Su W, Ying P, Li C (2008) Chin J Catal 29:105

    Article  Google Scholar 

  27. Chiarello GL, Selli E, Forni E (2008) Appl Catal B 84:332

    Article  CAS  Google Scholar 

  28. Iliev V, Tomova D, Bilyarska L, Elyas A, Petrov L (2006) Appl Catal B 63:266

    Article  CAS  Google Scholar 

  29. Balázs N, Mogyorósi K, Srankó DF, Pallagi A, Alapi T, Oszkó A, Dombi A, Sipos P (2008) Appl Catal B 84:356

    Article  Google Scholar 

  30. Wang H-W, Lin H-C, Kuo C-H, Cheng Y-L, Yeh Y-C (2008) J Phys Chem Solids 69:633

    Article  CAS  Google Scholar 

  31. Ambrus Z, Mogyorósi K, Szalai Á, Alapi T, Demeter K, Dombi A, Sipos P (2008) Appl Catal A 340:153

    Article  CAS  Google Scholar 

  32. Weisz AD, García Rodenas L, Morando PJ, Regazzoni AE, Blesa MA (2002) Catal Today 103:76

    Google Scholar 

Download references

Acknowledgments

KM thanks the Magyary Zoltán Foundation for its financial support. This work was supported by the National Scientific Research Grant (OTKA T 67559) and by the National Office for Research and Technology (NTP_TECH_08_A4_DA_THER2). The authors would like also to thank the opportunity provided by the Department of Colloid Chemistry at the University of Szeged, led by Professor Imre Dékány to have an access to a broad range of material characterization techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pál Sipos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogyorósi, K., Kmetykó, Á., Czirbus, N. et al. Comparison of the substrate dependent performance of Pt-, Au- and Ag-doped TiO2 photocatalysts in H2-production and in decomposition of various organics. React Kinet Catal Lett 98, 215–225 (2009). https://doi.org/10.1007/s11144-009-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-009-0052-y

Keywords

Navigation