Skip to main content
Log in

Preferential oxidation of CO on Ni/CeO2 catalysts in the presence of excess H2 and CO2

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Preferential oxidation of CO (CO-PROX) was carried out over Ni supported on CeO2 prepared by the co-precipitation method. The influence of metal loadings (2.5, 5 and 10 wt.% Ni) and the reaction conditions such as reaction temperature and feed composition on CO oxidation and oxidation selectivity were evaluated by using dry reformate gas. No other reactions like CO or CO2 methanation, coking, reverse water gas shift (RWGS) reaction is observed in the temperature range of 100–200 °C on these catalysts. Hydrogen oxidation dominates over CO oxidation above the temperature of 200 °C. An increase in oxygen leads to an increase in CO conversion but a simultaneous decrease in the O2 selectivity. It has been noticed that 5 and 10 % Ni/CeO2 show better catalytic activity towards CO-PROX reaction. These catalysts were characterized by SBET, XRD, TEM, XPS and H2-TPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Appleby AJ, Foulkes FR (1989) Fuel cell handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  2. Zalc JM, Löffler DG (2002) J Power Sources 111:58

    Article  CAS  Google Scholar 

  3. Lemons RA (1990) J Power Sources 29:251

    Article  CAS  Google Scholar 

  4. Lee SH, Han J, Lee K-Y (2002) J Power Sources 109:394

    Article  CAS  Google Scholar 

  5. Mishra A, Prasad R (2011) Bull Chem React Eng Catal 6:1

    Article  CAS  Google Scholar 

  6. Bion N, Epron F, Moreno M, Mariño F, Durprez D (2008) Top Catal 51:76

    Article  CAS  Google Scholar 

  7. Avgouropoulos G, Ioannides T, Papadopoulou Ch, Batista J, Hocevar S, Matralis HK (2002) Catal Today 75:157

    Article  CAS  Google Scholar 

  8. Grisel RJH, Nieuwenhuys BE (2001) J Catal 199:48

    Article  CAS  Google Scholar 

  9. Schubert MM, Plzak V, Garche J, Behm RJ (2001) Catal Lett 76:143

    Article  CAS  Google Scholar 

  10. Han Y-F, Kahlich MJ, Kinne M, Behm RJ (2002) Phys Chem Chem Phys 4:389

    Article  CAS  Google Scholar 

  11. Kim DH, Lim MS (2002) Appl Catal A 224:27

    Article  CAS  Google Scholar 

  12. Davran-Candan T, Demir M, Yildirim R (2011) Reac Kinet Mech Cat 104:389

    Article  CAS  Google Scholar 

  13. Luengnaruemitchai A, Thoa DTK, Osuwan S, Gulari E (2005) Int J Hydrogen Energy 30:981

    Article  CAS  Google Scholar 

  14. Schubert MM, Kahlich MJ, Gasteiger HA, Behm RJ (1999) J Power Sources 84:175

    Google Scholar 

  15. Korotkikh O, Farrauto R (2000) Catal Today 62:249

    Article  CAS  Google Scholar 

  16. Wang JB, Shih W-H, Huang T-J (2000) Appl Catal A 203:191

    Article  CAS  Google Scholar 

  17. Xiaoyuan J, Guanglie L, Renxian Z, Jianxin M, Yu C, Xiaoming Z (2001) Appl Surf Sci 173:208

    Article  CAS  Google Scholar 

  18. Luo M-F, Zhong Y-J, Yuan X-X, Zheng X-M (1997) Appl Catal A 162:121

    Article  CAS  Google Scholar 

  19. Ratnasamy P, Srinivas D, Satyanarayana C, Manikandan P, Kumaran RSS, Sachin M, Shetti VN (2004) J Catal 221:455

    Article  CAS  Google Scholar 

  20. Martínez-Arias A, Fernandez-García M, Soria J, Conesa JC (1999) J Catal 182:367

    Article  Google Scholar 

  21. Martínez-Arias A, Fernández-García M, Gálvez O, Coronado JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) J Catal 195:207

    Article  Google Scholar 

  22. Wang JB, Lin S-C, Huang T-J (2002) Appl Catal A 232:107

    Article  CAS  Google Scholar 

  23. Jernigan GG, Somorjai GA (1994) J Catal 147:567

    Article  CAS  Google Scholar 

  24. Kacimi S, Barbier J Jr, Taha R (1993) Catal Lett 22:343

    Article  CAS  Google Scholar 

  25. JCPDS, PDF No. 34-0394, ICDD

  26. Barrio L, Kubacka A, Zhou G, Estrella M, Martínez-Arias A, Hanson JC, Fernández-García M, Rodriguez JA (2010) J Phys Chem C 114:12689

    Article  CAS  Google Scholar 

  27. Navarro RM, Álvarez-Galván MC, Rosa F, Fierro JLG (2006) Appl Catal A 297:60

    Article  CAS  Google Scholar 

  28. Lu Y, Xue J, Yu C, Liu Y, Shen S (1998) Appl Catal A 174:121

    Article  CAS  Google Scholar 

  29. Hüfner S (2003) Photoelectron spectroscopy principles and applications, 3rd edn. Springer, Berlin, p 109

    Google Scholar 

  30. Sarma DD, Hegde MS, Rao CNR (1981) J Chem Soc, Faraday Trans 2 77:1509

    Google Scholar 

  31. Damyanova S, Pawelec B, Arishtirova K, Martinez Huerta MV, Fierro JLG (2008) Appl Catal A 337:86

    Google Scholar 

  32. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409:307

    Article  CAS  Google Scholar 

  33. Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Surf Interface Anal 40:264

    Article  Google Scholar 

  34. Huang J, Kang Y, Yang T, Wang Y, Wang S (2011) Reac Kinet Mech Cat 104:149

    Article  CAS  Google Scholar 

  35. Powell CJ, Larson PE (1978) Appl Surf Sci 1:186

    Article  CAS  Google Scholar 

  36. Penn DR (1976) J Electron Spectrosc Relat Phenom 9:29

    Article  CAS  Google Scholar 

  37. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129

    Article  CAS  Google Scholar 

  38. Trovarelli A (1996) Catal Rev Sci Eng 38:439

    Article  CAS  Google Scholar 

  39. Gonzalez-Delacruz VM, Ternero F, Pereñíguez R, Caballero A, Holgado JP (2010) Appl Catal A 384:9

    Google Scholar 

  40. Ocampo F, Louis B, Roger A-C (2009) Appl Catal A 369:90

    Article  CAS  Google Scholar 

  41. Mariño F, Descorme C, Durprez D (2005) Appl Catal B 58:175

    Article  Google Scholar 

  42. Kunkalekar RK, Salker AV (2012) Reac Kinet Mech Cat 106:395

    Google Scholar 

  43. Habazaki H, Yamasaki M, Zhanga B-P, Kawashima A, Kohno S, Takai T, Hashimoto K (1998) Appl Catal A 172:131

    Article  CAS  Google Scholar 

  44. Takenaka S, Shimizu T, Otsuka K (2004) Int J Hydrogen Energy 29:1065

    Article  CAS  Google Scholar 

  45. Krämer M, Stöwe K, Duisberg M, Müller F, Reiser M, Sticher S, Maier WF (2009) Appl Catal A 369:42

    Article  Google Scholar 

Download references

Acknowledgments

SM and MSH are thankful to Council of Scientific and Industrial Research, Government of India for the award of Senior Research Fellowship and Emeritus Scientist Fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Malwadkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malwadkar, S., Bera, P., Hegde, M.S. et al. Preferential oxidation of CO on Ni/CeO2 catalysts in the presence of excess H2 and CO2 . Reac Kinet Mech Cat 107, 405–419 (2012). https://doi.org/10.1007/s11144-012-0477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0477-6

Keywords

Navigation