Skip to main content
Log in

Multifunctional Cu(II) organic–inorganic hybrid as a catalyst for Knoevenagel condensation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, organic–inorganic hybrid materials based on polyoxometalate and copper coordination polymer, [CuI(4,4′-bipy)]3[PMo VI10 Mo V2 O40{CuII(2,2′-bipy)}] designated as CuMo-CP(1), were prepared and characterized by various techniques including X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), and elemental analysis. It was found that the CuMo-CP(1) can be used as an efficient heterogeneous bifunctional acid-base catalyst for Knoevenagel condensation of aromatic aldehydes and cyclohexanone with malononitrile or ethyl cyanoacetate at 60 °C in ethanol. Obtaining the corresponding Knoevenagel adduct in moderate to excellent conversion yields within 4 h is promising. The catalyst can be easily recovered from the reaction mixture and reused for three times without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Reinke TM, OKeeffe M, Yaghi OM (2001) Acc Chem Res 34:319–330

    Article  Google Scholar 

  2. Kitagawan S, Kitura R, Noro S (2004) Angew Chem Int Ed 43:2334–2375

    Article  Google Scholar 

  3. Li JR, Sculley JL, Zhou HC (2012) Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  4. Zhuang GM, Li XB, Gao EQ (2014) Inorg Chem Commun 47:134–137

    Article  CAS  Google Scholar 

  5. Semerci F, Yesilel OZ, Soylu MS, Keskin S, Büyükgüngör O (2013) Polyhedron 50:314–320

    Article  CAS  Google Scholar 

  6. Zheng XF, Zhu LG (2011) Inorg Chim Acta 365:419–429

    Article  CAS  Google Scholar 

  7. Xu GC, Zhang L, Zhang YH, Guo JX, Shi MQ, Jia DZ (2013) Cryst Eng Comm 15:2873–2880

    Article  CAS  Google Scholar 

  8. Maghami M, Farzaneh F, Simpson J, Moazeni A (2014) Polyhedron 73:22–29

    Article  CAS  Google Scholar 

  9. Kolea GK, Vittal JJ (2013) Chem Soc Rev 42:1755–1775

    Article  Google Scholar 

  10. Dua M, Li CP, Liub CS, Fang SM (2013) Coord Chem Rev 257:1282–1305

    Article  Google Scholar 

  11. Maekawa M, Tominaga T, Sugimoto K, Okubo T, Sowa TK, Munakatab M, Kitagawad S (2012) Cryst Eng Comm 14:1345–1353

    Article  CAS  Google Scholar 

  12. Chen Q, Wang XF, Hu HM, Wang J, An R, Dong FX, Yang ML, Xue GL (2014) Polyhedron 8:517–524

    Article  Google Scholar 

  13. Mu Y, Ran Y, Qin G, Ma X, Hao L, Wei Z, Niu Y, Lü H (2013) Inorg Chem Commun 36:179–183

    Article  CAS  Google Scholar 

  14. Dang DB, Li MM, Bai Y, Wang JL (2011) Spectrochim Acta A 83:499–503

    Article  CAS  Google Scholar 

  15. Dai M, Zhu LW, Yang JH, Li HX, Chen MM, Ren ZG, Lang JP (2013) Inorg Chem Commun 29:70–75

    Article  CAS  Google Scholar 

  16. Wang XL, Luan J, Sui FF, Lin HY, Liu GC, Xu C (2013) Cryst Growth Des 13:3561–3576

    Article  CAS  Google Scholar 

  17. Chen Q, Chen XL, Hua HM, Shua HM, Fu F, Yanga ML, Xue GL (2014) Inorg Chem Commun 44:143–147

    Article  CAS  Google Scholar 

  18. Hamidipour L, Kubicki M, Farzaneh F, Ghandi M, Maghami M (2013) Inorg Chem Commun 36:227–231

    Article  CAS  Google Scholar 

  19. Demadis KD, Panera A, Anagnostou Z, Varouhas D, Kirillov AM, Císařová I (2013) Cryst Growth Des 13:4480–4489

    Article  CAS  Google Scholar 

  20. Santoni M-P, Hanan GS, Hasenknopf B (2014) Coord Chem Rev 281:64–85

    Article  CAS  Google Scholar 

  21. Kozhevnikov IV (2002) Catalysts for fine chemical synthesis, catalysis by polyoxometalates. Wiley, Chichester

    Google Scholar 

  22. Xiao P, Dumur F, Tehfe MA, Graff B, Fouassier JP, Gigmes D, Lalevée J (2013) Macromol Chem Physic 214:1749–1755

    Article  CAS  Google Scholar 

  23. Ammam M (2013) J Mater Chem A 1:6291–6312

    Article  CAS  Google Scholar 

  24. Wang J, Liu Y, Xu K, Qi Y, Zhong J, Zhang K, Li J, Wang E, Wu Z, Kang Z (2014) Appl Mater Interfac 6:9785–9789

    Article  CAS  Google Scholar 

  25. Wang LF, Zhuang ZZ, Chang Z, Zhou BY, Hu TL (2013) Inorg Chem Commun 28:70–74

    Article  CAS  Google Scholar 

  26. Craven M, Yahya R, Kozhevnikova E, Boomishankar R, Robertson CM, Steiner A, Kozhevnikov I (2013) Chem Commun 49:349–351

    Article  CAS  Google Scholar 

  27. Proust A, Matt B, Villanneau R, Guillemot G, Gouzerh P, Izzet G (2012) Chem Soc Rev 41:7605–7622

    Article  CAS  Google Scholar 

  28. Nyman M, Burns PC (2012) Chem Soc Rev 41:7354–7367

    Article  CAS  Google Scholar 

  29. Song YF, Tsunashima R (2012) Chem Soc Rev 41:7384–7402

    Article  CAS  Google Scholar 

  30. Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, Song J, Lian T, Musaev DG, Hill CL (2012) Chem Soc Rev 41:7572–7589

    Article  CAS  Google Scholar 

  31. Yang H, Meng J, Sun X, Chen L, Yang D (2014) Inorg Chem Commun 39:43–46

    Article  CAS  Google Scholar 

  32. Miras HN, Yan J, Long DL, Cronin L (2012) Chem Soc Rev 41:7403–7430

    Article  CAS  Google Scholar 

  33. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Chem Rev 110:6009–6048

    Article  CAS  Google Scholar 

  34. Bigi F, Chesini L, Maggi R, Sartori G (1999) J Org Chem 64:1033–1035

    Article  CAS  Google Scholar 

  35. Kwak G, Fujiki M (2004) Macromolecules 37:2021–2025

    Article  CAS  Google Scholar 

  36. Liang F, Pu YJ, Kurata T, Kido J, Nishid H (2005) Polymer 46:3767–3775

    Article  CAS  Google Scholar 

  37. Yu N, Aramini JM, German MW, Huang Z (2000) Tetrahedron Lett 41:6993–6996

    Article  CAS  Google Scholar 

  38. Texier-Boulle F, Foucaud A (1982) Tetrahedron Lett 23:4927–4928

    Article  Google Scholar 

  39. Shanthan Rao P, Venkataratnam R (1991) Tetrahedron Lett 32:5821–5822

    Article  Google Scholar 

  40. Bartoli G, Bosco M, Carlone A, Dalpozzo R, Galzerano P, Melchiorre P, Sambri L (2008) Tetrahedron Lett 49:2555–2557

    Article  CAS  Google Scholar 

  41. Climent MJ, Corma A, Dominguez I, Iborra S, Sabater MJ, Sastre G (2007) J Catal 246:136–146

    Article  CAS  Google Scholar 

  42. Kubota Y, Nishizaki Y, Ikeya H, Saeki M, Hida T, Kawazu S, Yoshida M, Fujii H, Sugi Y (2004) Micropor Mesopor Mater 70:135

    Article  CAS  Google Scholar 

  43. Mukhopadhyay C, Ray S (2011) Catal Commun 12:1496–1502

    Article  CAS  Google Scholar 

  44. Tran UPN, Le KKA, Phan NTS (2011) ACS Catal 1:120–127

    Article  CAS  Google Scholar 

  45. Llabrés FX, Xamena I, Cirujano FG, Corma A (2012) Micropor Mesopor Mater 157:112–117

    Article  Google Scholar 

  46. Luo Q-x, Song X-d, Ji M, Park SE, Hao C, Li Y-q (2014) Appl Catal A 478:81–90

    Article  CAS  Google Scholar 

  47. Panchenko VN, Matrosova MM, Jeon J, Won Jun J, Timofeeva MN, Jhung SH (2014) J Catal 316:251–259

    Article  CAS  Google Scholar 

  48. Jin H, Qi Y, Wang E, Li Y, Wang X, Qin C, Chang S (2006) Cryst Growth Des 6:2693–2698

    Article  CAS  Google Scholar 

  49. Jin H, Wang X, Qi Y, Wang E (2007) Inorg Chim Acta 360:3347–3353

    Article  CAS  Google Scholar 

  50. Climent M, Corma A, Domingue I, Iborra S, Sabater M, Sastre G (2007) J Catal 246(2007):136–146

    Article  CAS  Google Scholar 

  51. Ogata Y, Tsuchida S (1958) J Am Chem Soc 81:2092–2094

    Article  Google Scholar 

  52. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, Part A: structure and mechanisms. Springer, New York, p 344

    Google Scholar 

  53. Lienhard GE, Jencks WP (1965) J Am Chem Soc 87:3863–3874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would appreciate the Alzahra University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Farzaneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, F., Kashani Maleki, M. & Ghandi, M. Multifunctional Cu(II) organic–inorganic hybrid as a catalyst for Knoevenagel condensation. Reac Kinet Mech Cat 117, 87–101 (2016). https://doi.org/10.1007/s11144-015-0919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0919-z

Keywords

Navigation