Skip to main content
Log in

The inhibition effect of oxygen in the calcination atmosphere on the catalytic performance of MnOx–CeO2 catalysts for NO oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the widely studied MnCe (MnOx–CeO2) catalyst prepared by the co-precipitation method was used for investigating the effects of oxygen in the calcination atmosphere (referred as Oca) on its catalytic performance for NO oxidation. The evaluation of catalytic performance showed that MnCe-O (calcined in O2/Ar) exhibited a much lower NO conversion in comparison with MnCe-A (calcined in Ar) catalyst. The characterization results revealed that Oca could cause the sintering of MnCe catalysts and then reduce the surface area, which decreased the active sites for catalytic reaction. Simultaneously, Oca inhibited the incorporation of Mn ions into CeO2 lattice, which could weaken the interaction between MnOx and CeO2 supports. This weak interaction decreased the amounts of active oxygen species and weakened the redox properties of MnCe catalyst. Furthermore, the nitrate species adsorbed on MnCe-O was more stable than that on MnCe-A. Therefore, the inferior catalytic performance of MnCe-O could be attributed to the collective effect of low concentration active sites and active oxygen species, poor redox properties and stable adsorbed nitrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skalska K, Miller JS, Ledakowicz S (2010) Sci Total Environ 408:3976–3989

    Article  CAS  Google Scholar 

  2. Hwang S, Jo S-H, Kim J, Shin M-C, Chun HH, Park H, Lee H (2016) React Kinet Mech Catal 117:583–591

    Article  CAS  Google Scholar 

  3. Li YJ, Weinstein M, Roth S (2015) Catal Today 258:396–404

    Article  CAS  Google Scholar 

  4. Graham GW, Jen HW, Ezekoye O, Kudla RJ, Chun W, Pan XQ, Mccabe RW (2007) Catal Lett 116:1–8

    Article  CAS  Google Scholar 

  5. Hauff K, Dubbe H, Tuttlies U, Eigenberger G, Nieken U (2013) Appl Catal B 129:273–281

    Article  CAS  Google Scholar 

  6. Wu X, Liang Q, Weng D, Lu Z (2007) Catal Commun 8:2110–2114

    Article  CAS  Google Scholar 

  7. Tikhomirov K, Kröcher O, Elsener M, Wokaun A (2006) Appl Catal B 64:72–78

    Article  CAS  Google Scholar 

  8. Machida M, Uto M, Kurogi D, Kijima T (2001) J Mater Chem 11:900–904

    Article  CAS  Google Scholar 

  9. Wei C, Qin Z, Wei Z, Bu Y (2014) Appl Catal B 158–159:258–268

    Google Scholar 

  10. Qi GS, Li W (2015) Catal Today 258:205–213

    Article  CAS  Google Scholar 

  11. Wu X, Lin F, Xu H, Weng D (2010) Appl Catal B 96:101–109

    Article  CAS  Google Scholar 

  12. Lin F, He Y, Wang Z, Ma Q, Whiddon R, Zhu Y, Liu J (2016) RSC Adv 6:31422–314–31422–330

    Google Scholar 

  13. Machida M (2002) Catal Surv Asia 5:91–102

    Article  CAS  Google Scholar 

  14. Wang P, Luo P, Yin J, Lei L (2016) J Namomater 2016:1–5

    Google Scholar 

  15. Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164

    Article  CAS  Google Scholar 

  16. Mingshan C, Yuan L, Xinquan W, Jun W, Meiqing S (2013) J Rare Earth 31:572–576

    Article  Google Scholar 

  17. Jia A-P, Deng Y, Hu G-S, Luo M-F, Lu J-Q (2016) React Kinet Mech Catal 117:503–520

    Article  CAS  Google Scholar 

  18. And BM, Ramaswamy AV, Srinivas D, And CSG, Ramaswamy V (2005) Chem Mater 17:3983–3993

    Article  Google Scholar 

  19. Jing D, Chen D, Fan G, Zhang Q, Xu J, Gou S, Li H, Nie F (2016) Cryst Growth Des 16:6849–6857

    Article  CAS  Google Scholar 

  20. Gao Y, Meng F, Li X, Wen J, Li Z (2016) Catal Sci Technol 6:7800–7811

    Article  CAS  Google Scholar 

  21. Li X, Lu X, Meng Y, Yao C, Chen Z (2013) J Alloys Compd 562:56–63

    Article  CAS  Google Scholar 

  22. Jampaiah D, Tur KM, Venkataswamy P, Ippolito SJ, Sabri YM, Tardio J, Bhargava SK, Reddy BM (2015) RSC Adv 5:30331–30341

    Article  Google Scholar 

  23. Zhao B, Li G, Ge C, Wang Q, Zhou R (2010) Appl Catal B 96:338–349

    Article  CAS  Google Scholar 

  24. Barros FDAA, Sousa HSAD, Oliveira AC, Junior MC, Filho JM, Viana BC, Oliveira AC (2013) Catal Today 212:127–136

    Article  CAS  Google Scholar 

  25. Hayyan M, Hashim MA, Alnashef IM (2016) Chem Rev 116:3029–3085

    Article  CAS  Google Scholar 

  26. Abbas F, Jan T, Iqbal J, Naqvib MSH, Ahmed I (2016) Mater Chem Phys 173:146–151

    Article  CAS  Google Scholar 

  27. Jiang HX, Zhao J, Jiang DY, Zhang MH (2014) Catal Lett 144:325–332

    Article  CAS  Google Scholar 

  28. Concepción P, Corma A, Silvestrealbero J, Franco V, Chaneching JY (2004) J Am Chem Soc 126:5523

    Article  Google Scholar 

  29. Li H, Lu G, Dai Q, Wang Y, Yun G, Guo Y (2011) Appl Catal B 102:475–483

    Article  CAS  Google Scholar 

  30. Yu CL, Wang LS, Huang BC (2015) Aerosol Air Qual Res 15:1017–1027

    Article  CAS  Google Scholar 

  31. Liu J, Li X, Zhao Q, Ke J, Xiao H, Lv X, Liu S, Tadé M, Wang S (2016) Appl Catal B 200:297–308

    Article  Google Scholar 

  32. Xiong S, Weng J, Liao Y, Li B, Zou S, Geng Y, Xiao X, Huang N, Yang S (2016) J Phys Chem C 120:15299–15309

    Article  CAS  Google Scholar 

  33. Sun P, Guo RT, Liu SM, Wang SX, Pan WG, Li MY (2016) Appl Catal A 531:129–138

    Article  Google Scholar 

  34. Zhang L, Li LL, Cao Y, Xiong Y, Wu SG, Sun JF, Tang CJ, Gao F, Dong L (2015) Catal Sci Technol 5:2188–2196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of Chinese National Programs for Research and Development (2016YFC0203800), the National Natural Science Foundation of China (51408309 and 51578288), Science and Technology Support Program of Jiangsu Province (BE2014713), Natural Science Foundation of Jiangsu Province (BK20140777), Industry-Academia Cooperation Innovation Fund Projects of Jiangsu Province (BY2016004-09), Jiangsu Province Scientific and Technological Achievements into a Special Fund Project (BA2015062 and BA2016055), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, Industry-Academia Cooperation Project of Datang Pro-environment (DNEPT_CZ_179_16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shule Zhang.

Additional information

Yiqing Zeng and Dong Jiang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Jiang, D., Wang, Y. et al. The inhibition effect of oxygen in the calcination atmosphere on the catalytic performance of MnOx–CeO2 catalysts for NO oxidation. Reac Kinet Mech Cat 122, 593–604 (2017). https://doi.org/10.1007/s11144-017-1234-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1234-7

Keywords

Navigation