Skip to main content
Log in

Catalytic properties of recombinant Thermomyces lanuginosus lipase immobilized by impregnation into mesoporous silica in the enzymatic esterification of saturated fatty acids with aliphatic alcohols

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Immobilization of recombinant Thermomyces lanuginosus lipase (designated as rPichia/lip) was carried out by moisture capacity impregnation of mesoporous silica granules followed by drying, and forcible adsorption of enzyme occurred. Eventually prepared lipase-active heterogeneous biocatalysts were systematically studied for enzymatic esterification performed at ambient conditions (20 ± 2 °C, 1 bar) in unconventional anhydrous media of organic solvents such as hexane and diethyl ether. The saturated fatty acids differing in the number of carbon atoms (C2–C10, C18), and aliphatic alcohols differing in the structure of the molecules, namely both the number of carbon atoms (C2–12, C16), and the isomerism of the carbon skeleton (n- and iso-), and OH-group position (prim-, sec-, tert-) were studied as substrates for enzymatic esterification. The specificity of the heterogeneous enzymatic esterification was determined by comparing the reaction rates for various pairs of substrates; and the matrix of relative units of activities was composed. The immobilized on silica rPichia/lip was found to have sufficiently wide specificity toward saturated fatty acids and aliphatic alcohols. High reaction rates were measured in esterification of fatty acids and primary n- and iso-aliphatic alcohols possessing more than four carbon atoms in the molecules. The enanthic acid (heptanoic, C7:0) reacted with butanol (C4) with the highest rate; and the kinetic parameters such as Michaelis constant (KM) for acid and maximal reaction rate (Vmax) were determined under the studied conditions of esterification. Substrates containing aromatic residues did not participate in esterification. The lipase-active heterogeneous biocatalysts possessed considerably high operational stability, and the catalytic activity was completely retained for several tens of reaction cycles in a periodic batch process of low-temperature synthesis of various fatty acid esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grunwald P (2009) Biocatalysis. Imperial College Press, London

    Book  Google Scholar 

  2. Tao J, Kazlauskas R (2011) Biocatalysis for green chemistry and chemical process development. Wiley, Hoboken

    Book  Google Scholar 

  3. Sun J, Lee L, Liu S (2014) Aust J Chem 67:1373–1381

    Article  CAS  Google Scholar 

  4. Talon R, Montel M, Berdague J (1996) Enzym Microb Technol 19:620–6228

    Article  CAS  Google Scholar 

  5. Hsu A, Foglia T, Siya S (2000) Biotechnol Appl Biochem 31:179–183

    Article  CAS  PubMed  Google Scholar 

  6. Pinto M, Freire D, Pinto J (2014) Molecules 19:12509–12530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silveira E, Moreno-Perez S, Basso A, Serban S, Mamede R, Tardioli P, Farinas C, Rocha-Martin J, Fernandez-Lorente G, Guisan J (2017) BMC Biotechnol 17:88–101

    Article  Google Scholar 

  8. Mulalee S, Srisuwan P, Phisalaphong M (2015) Chin J Chem Eng 23:1851–1856

    Article  CAS  Google Scholar 

  9. Gandhi N, Mukherjee K (2001) J Am Oil Chem Soc 78:161–165

    Article  CAS  Google Scholar 

  10. Lopresto C, Calabro V, Woodley J, Tufvesson P (2014) J Mol Catal B 110:64–71

    Article  CAS  Google Scholar 

  11. Raita M, Kiatkittipong W, Laosiripojana N, Champreda V (2015) Chem Eng J 278:19–23

    Article  CAS  Google Scholar 

  12. Pang J, Zhou G, Liu R, Li T (2016) Mater Sci Eng C 59:35–42

    Article  CAS  Google Scholar 

  13. Chang S, Shaw J (2009) New Biotechnol 26:109–116

    Article  CAS  Google Scholar 

  14. Sutili F, Ruela H, Leite S, Miranda L, Leal I, Souza R (2013) J Mol Catal B 85–86:37–42

    Article  CAS  Google Scholar 

  15. Gumel A, Annuar M, Heidelberg T, Chisti Y (2011) Process Biochem 46:2079–2090

    Article  CAS  Google Scholar 

  16. Enayati M, Gong Y, Goddard J, Abbaspourrad A (2018) Food Chem 266:508–513

    Article  CAS  PubMed  Google Scholar 

  17. Jia C, Wang H, Zhang W, Zhang X, Feng B (2018) Process Biochem 66:28–32

    Article  CAS  Google Scholar 

  18. Bernal C, Escobar S, Wilson L, Illanes A, Mesa M (2014) Carbon 74:96–103

    Article  CAS  Google Scholar 

  19. Wang Z, Du W, Dai L, Liu D (2016) J Mol Catal B 127:11–17

    Article  CAS  Google Scholar 

  20. Guebara S, Ract J, Vitolo M (2018) Arab J Sci Eng 43:3631–3637

    Article  CAS  Google Scholar 

  21. Cavalcanti E, Aguieiras É, da Silva P, Duarte J, Cipolatti E, Fernandez-Lafuente R, da Silva J, Freire D (2018) Fuel 215:705–713

    Article  CAS  Google Scholar 

  22. Fernandes K, Papadaki A, da Silva J, Fernandez-Lafuente R, Koutinas A, Freire D (2018) Ind Crops Product 116:90–96

    Article  CAS  Google Scholar 

  23. Akerman C, Hagström A, Mollaahmad M, Karlsson S (2011) Hatti-Kaul. Process Biochem 46:2225–2231

    Article  CAS  Google Scholar 

  24. Kim H, Choi N, Kim Y, Kim H, Lee J, Kim I (2019) Renew Energy 130:489–494

    Article  CAS  Google Scholar 

  25. Verdasco-Martin C, Garcia-Verdugo E, Porcar R, Fernandez-Lafuente R, Otero C (2018) Food Chem 245:39–46

    Article  CAS  PubMed  Google Scholar 

  26. Naik S, Basu A, Saikia R, Madan B, Paul P, Chaterjee R, Brask J, Svendsen A (2010) J Mol Catal B 65:18–23

    Article  CAS  Google Scholar 

  27. Arsan J, Parkin K (2000) Biotechnol Bioeng 69:222–226

    Article  CAS  PubMed  Google Scholar 

  28. Perminova L, Kovalenko G, Chukanov N, Patrushev Y (2017) Rus Chem Bull 11:2194–2197

    Article  CAS  Google Scholar 

  29. Kovalenko G, Perminova L, Chuenko T, Rudina N (2016) Appl Biochem Microbiol 52:582–588

    Article  CAS  Google Scholar 

  30. Bearden J (1978) Biochim Biophys Acta 533:525–529

    Article  CAS  PubMed  Google Scholar 

  31. Kovalenko G, Perminova L, Beklemishev A, Mamaev A, Patrushev Y (2018) Catal Ind 10:68–74

    Article  Google Scholar 

  32. Mahapatra P, Kumari A, Garlapati V, Banerjee R, Nag A (2009) J Mol Catal B 60:57–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Maria B. Pykhtina for cultivation of the rPichia/lip strain-producer for this research. This work was conducted within the framework of the budget Project No. AAAA-A17-117,041,710,075-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina A. Kovalenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, G.A., Perminova, L.V. & Beklemishev, A.B. Catalytic properties of recombinant Thermomyces lanuginosus lipase immobilized by impregnation into mesoporous silica in the enzymatic esterification of saturated fatty acids with aliphatic alcohols. Reac Kinet Mech Cat 128, 479–491 (2019). https://doi.org/10.1007/s11144-019-01648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01648-z

Keywords

Navigation