Skip to main content
Log in

Improved catalytic performance of mesoporous ZSM-5 nanocrystalline zeolite prepared by the cationic surfactant-ammonium salt mixed agent method in the methanol to gasoline reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A mixed organic agent system was employed to achieve mesoporous highly crystalline ZSM-5 zeolite. Decyltrimethylammonium bromide (DeTAB) and tetramethyl ammonium hydroxide (TMAOH) were used as the mesogenous and molecular templates respectively in the synthesis gel with a composition of 60SiO2: 1Al2O3:12Na2O:3150H2O:xDeTAB:8TMAOH. The sole presence of DeTAB as the mesogenous template in the synthesis gel led to the high degrees of mesoporosity in the ZSM-5/xD samples but negatively affected the intrinsic properties of zeolites. At the high concentration of DeTAB (x = 0.7), the mesopore volume dramatically increased while the relative crystallinity and the total acid sites critically decreased. By adding the TMA+ ions as a microporous template to the ZSM-5/0.7D synthesis gel, not only a zeolite with well-developed mesoporosity was obtained but also its crystal structure and the intrinsic acidity were preserved. The catalyst samples were characterized by FESEM, TEM, XRD, FT-IR, nitrogen adsorption–desorption isotherms, NH3-TPD and TGA techniques. The ZSM-5/0.7D/T exhibited higher surface area, higher mesopore volume, higher crystallinity and more acid sites than the ZSM-5/0.7D. The catalytic conversion of methanol to gasoline was conducted in a fixed bed reactor at T = 390 °C and WHSV = 4.74 h−1. In ZSM-5/0.7D/T catalyst the mesoporosity formation without severely damaging the crystal structure and the acidity of the zeolite led to the best catalytic performance including the highest liquid hydrocarbon yield, most stable catalytic performance and longest catalytic lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luo G, McDonald AG (2013) Energy Fuels 28:600–606

    Google Scholar 

  2. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810–5831

    CAS  Google Scholar 

  3. Zaidi H, Pant K (2004) Catal Today 96:155–160

    CAS  Google Scholar 

  4. Stöcker M (1999) Microporous Mesoporous Mater 29:3–48

    Google Scholar 

  5. Fathi S, Sohrabi M, Falamaki C (2014) Fuel 116:529–537

    CAS  Google Scholar 

  6. Liu B, Zheng L, Zhu Z, Zhang K, Xi H, Qian Y (2014) RSC Adv 4:13831–13838

    CAS  Google Scholar 

  7. Groen J, Peffer L, Moulijn J, Pérez-Ramırez J (2004) Colloids Surf A 241:53–58

    CAS  Google Scholar 

  8. Van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Catal Rev 45:297–319

    Google Scholar 

  9. Egeblad K, Christensen CH, Kustova M, Christensen CH (2007) Chem Mater 20:946–960

    Google Scholar 

  10. Serrano DP, van Grieken R, Melero JA, García A, Vargas C (2010) J Mol Catal A 318:68–74

    CAS  Google Scholar 

  11. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246

    CAS  PubMed  Google Scholar 

  12. Firoozi M, Baghalha M, Asadi M (2009) Catal Commun 10:1582–1585

    CAS  Google Scholar 

  13. Rownaghi AA, Hedlund J (2011) Ind Eng Chem Res 50:11872–11878

    CAS  Google Scholar 

  14. Petushkov A, Yoon S, Larsen SC (2011) Microporous Mesoporous Mater 137:92–100

    CAS  Google Scholar 

  15. Jia Y, Wang J, Zhang K, Feng W, Liu S, Ding C, Liu P (2017) Microporous Mesoporous Mater 247:103–115

    CAS  Google Scholar 

  16. Mentzel UV, Højholt KT, Holm MS, Fehrmann R, Beato P (2012) Appl Catal A 417:290–297

    Google Scholar 

  17. Schmidt F, Hoffmann C, Giordanino F, Bordiga S, Simon P, Carrillo-Cabrera W, Kaskel S (2013) J Catal 307:238–245

    CAS  Google Scholar 

  18. Kharaji AG, Beheshti M, Repke J-U, Tangestani-nejad S, Gorke O, Godini HR (2019) Reac Kinet Mech Cat 127:375–390

    Google Scholar 

  19. Di Z, Yang C, Jiao X, Li J, Wu J, Zhang D (2013) Fuel 104:878–881

    CAS  Google Scholar 

  20. Fu T, Chang J, Shao J, Li Z (2017) J Energy Chem 26:139–146

    Google Scholar 

  21. Rutkowska M, Macina D, Mirocha-Kubień N, Piwowarska Z, Chmielarz L (2015) Appl Catal B 174:336–343

    Google Scholar 

  22. Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) J Nat Gas Chem 20:237–242

    CAS  Google Scholar 

  23. Schmidt F, Lohe MR, Büchner B, Giordanino F, Bonino F, Kaskel S (2013) Microporous Mesoporous Mater 165:148–157

    CAS  Google Scholar 

  24. Kim J, Choi M, Ryoo R (2010) J Catal 269:219–228

    CAS  Google Scholar 

  25. Wan Z, Wu W, Chen W, Yang H, Zhang D (2014) Ind Eng Chem Res 53:19471–19478

    CAS  Google Scholar 

  26. Sang Y, Liu H, He S, Li H, Jiao Q, Wu Q, Sun K (2013) J Energy Chem 22:769–777

    CAS  Google Scholar 

  27. Stepacheva A, Doluda V, Lakina N, Molchanov V, Sidorov A, Matveeva V, Sulman M, Sulman E (2018) Reac Kinet Mech Cat 124:807–822

    CAS  Google Scholar 

  28. Sommer L, Mores D, Svelle S, Stöcker M, Weckhuysen BM, Olsbye U (2010) Microporous Mesoporous Mater 132:384–394

    CAS  Google Scholar 

  29. Groen JC, Jansen JC, Moulijn JA, Pérez-Ramírez J (2004) J Phys Chem B 108:13062–13065

    CAS  Google Scholar 

  30. Song Y-Q, Feng Y-L, Liu F, Kang C-L, Zhou X-L, Xu L-Y, Yu G-X (2009) J Mol Catal A 310:130–137

    CAS  Google Scholar 

  31. Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud K-P, Svelle S (2008) Appl Catal A 345:43–50

    Google Scholar 

  32. Ahmadpour J, Taghizadeh M (2015) C R Chim 18:834–847

    CAS  Google Scholar 

  33. Yang Z, Xia Y, Mokaya R (2004) Adv Mater 16:727–732

    CAS  Google Scholar 

  34. Chen H, Wydra J, Zhang X, Lee P-S, Wang Z, Fan W, Tsapatsis M (2011) J Am Chem Soc 133:12390–12393

    CAS  PubMed  Google Scholar 

  35. Caicedo-Realpe R, Pérez-Ramírez J (2010) Microporous Mesoporous Mater 128:91–100

    CAS  Google Scholar 

  36. Na K, Choi M, Ryoo R (2013) Microporous Mesoporous Mater 166:3–19

    CAS  Google Scholar 

  37. Zhang H, Wang L, Zhang D, Meng X, Xiao F-S (2016) Microporous Mesoporous Mater 233:133–139

    CAS  Google Scholar 

  38. Han W, Jia Y, Xiong G, Yang W (2007) Sci Technol Adv Mater 8:101–105

    CAS  Google Scholar 

  39. Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) J Colloid Interface Sci 361:521–526

    CAS  PubMed  Google Scholar 

  40. Wang X, Gao X, Dong M, Zhao H, Huang W (2015) J Energy Chem 24:490–496

    CAS  Google Scholar 

  41. Yang Q, Zhang H, Kong M, Bao X, Fei J, Zheng X (2013) Chin J Catal 34:1576–1582

    CAS  Google Scholar 

  42. Noor P, Khanmohammadi MR, Roozbehani B, Yaripour F, Garmarudi AB (2018) J Energy Chem 27:582–590

    Google Scholar 

  43. Gu FN, Wei F, Yang JY, Lin N, Lin WG, Wang Y, Zhu JH (2010) Chem Mater 22:2442–2450

    CAS  Google Scholar 

  44. Park W, Yu D, Na K, Jelfs KE, Slater B, Sakamoto Y, Ryoo R (2011) Chem Mater 23:5131–5137

    CAS  Google Scholar 

  45. Chen G, Jiang L, Wang L, Zhang J (2010) Microporous Mesoporous Mater 134:189–194

    CAS  Google Scholar 

  46. Zhao J, Hua Z, Liu Z, Li Y, Guo L, Bu W, Cui X, Ruan M, Chen H, Shi J (2009) Chem Commun 48:7578–7580

    Google Scholar 

  47. Liu B, Li C, Ren Y, Tan Y, Xi H, Qian Y (2012) Chem Eng J 210:96–102

    Google Scholar 

  48. Zhang J, Ding H, Zhang Y, Yu C, Bai P, Guo X (2018) Chem Eng J 335:822–830

    CAS  Google Scholar 

  49. Emdadi L, Wu Y, Zhu G, Chang C-C, Fan W, Pham T, Lobo RF, Liu D (2014) Chem Mater 26:1345–1355

    CAS  Google Scholar 

  50. Yan X, Liu B, Huang J, Wu Y, Chen H, Xi H (2019) Ind Eng Chem Res 58:2924–2932

    CAS  Google Scholar 

  51. Yu D-K, Fu M-L, Yuan Y-H, Song Y-B, Chen J-Y, Fang Y-W (2016) J Fuel Chem Technol 44:1363–1369

    CAS  Google Scholar 

  52. Armaroli T, Simon L, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Appl Catal A 306:78–84

    CAS  Google Scholar 

  53. Ismail A, Mohamed R, Fouad O, Ibrahim I (2006) Cryst Res Technol 41:145–149

    CAS  Google Scholar 

  54. Cheng Y, Wang L-J, Li J-S, Yang Y-C, Sun X-Y (2005) Mater Lett 59:3427–3430

    CAS  Google Scholar 

  55. Coudurier G, Naccache C, Vedrine JC (1982) J Chem Soc, Chem Commun. https://doi.org/10.1039/C39820001413

    Article  Google Scholar 

  56. Shukla DB, Pandya VP, Fetting F (1993) Mater Chem Phys 33:50–57

    CAS  Google Scholar 

  57. Mintova S, Mihailova B, Valtchev V, Konstantinov L (1994) J Chem Soc, Chem Commun 15:1791–1792

    Google Scholar 

  58. Rownaghi AA, Rezaei F, Hedlund J (2011) Catal Commun 14:37–41

    CAS  Google Scholar 

  59. Chester AW, Derouane EG (2009) Zeolite characterization and catalysis. Springer, New York

    Google Scholar 

  60. Madeira FF, Tayeb KB, Pinard L, Vezin H, Maury S, Cadran N (2012) Appl Catal A 443:171–180

    Google Scholar 

  61. Van Speybroeck V, De Wispelaere K, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Waroquier M (2014) Chem Soc Rev 43:7326–7357

    PubMed  Google Scholar 

  62. Jacobsen CJ, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) J Am Chem Soc 122:7116–7117

    CAS  Google Scholar 

  63. Strizhak P, Zhokh A, Trypolskyi A (2017) Reac Kinet Mech Cat 123:247–268

    Google Scholar 

Download references

Acknowledgements

The second author of this paper gratefully acknowledges the support from department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University and special thanks Dr. Ashraf Ismail for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sadrara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrara, M., Khanmohammadi Khorrami, M. & Bagheri Garmarudi, A. Improved catalytic performance of mesoporous ZSM-5 nanocrystalline zeolite prepared by the cationic surfactant-ammonium salt mixed agent method in the methanol to gasoline reaction. Reac Kinet Mech Cat 128, 1111–1126 (2019). https://doi.org/10.1007/s11144-019-01685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01685-8

Keywords

Navigation