Skip to main content
Log in

Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We report the photocatalytic properties of ZnO and Cu2O thin films deposited on glass substrates at room temperature by DC sputtering and pulsed laser deposition. The photoactivity of the films was investigated through the degradation of rhodamine B (RhB) and methyl orange (MO) under solar light. In order to select the most suitable film of ZnO for the of RhB and MO degradation, the relationship between the characteristics (e.g. energy levels and defects concentration) of ZnO films and their effectiveness in the photocatalytic yield of RhB and MO been studied, where several films were deposited by using different oxygen partial pressures (PO2: 0.05–1.3 mbar), while Cu2O films were grown under a pressure of 0.01 mbar. The XRD patterns show that all ZnO films have (002) preferential orientation, and crystallite size increases from 73 to 122 nm raising PO2. The gap Eg of ZnO (3.26 and 4.15 eV) depends on PO2, and the films present photoluminescence emission in the UV–Vis-near IR region. On the basis of structural, optical and electrical characterizations of both films, a comparative study was carried out on the dyes degradation. Cu2O films exhibit a high photoactivity with MO (81.69%) under solar light (6 h), whilst for RhB the best elimination rate (60.85%) was achieved with ZnO films deposited at 0.1 mbar, which were also the ones exhibiting the highest PL peak intensity at the characteristic absorption wavelength of RhB (553 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448

    Article  CAS  PubMed  Google Scholar 

  2. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551

    Article  CAS  Google Scholar 

  3. Ali W, Ullah H, Zada A, Alamgir MK, Muhammad W, Ahmad MJ, Nadhman A (2018) Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange. Mater Chem Phys 213:259–266

    Article  CAS  Google Scholar 

  4. Naciri Y, Ait Ahsaine H, Chennah A, Amedlous A, Taoufyq A, Bakiz B, Ezahri M, Villain S, Benlhachemi A (2018) Facile synthesis, characterization and photocatalytic performance of Zn3(PO4)2 platelets toward photodegradation of Rhodamine B dye. J Environ Chem Eng 6:1840–1847

    Article  CAS  Google Scholar 

  5. Znad H, Abbas K, Hena S, Awual MdR (2018) Synthesis a novel multilamellarmesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6:218–227

    Article  CAS  Google Scholar 

  6. Threrujirapapong T, Khanitchaidecha W, Nakaruk A (2017) Treatment of high organic carbon industrial wastewater using photocatalysis process. Environ Nanotechnol Monit Manag 8:163–168

    Google Scholar 

  7. Ajmal A, Majeed I, Malik RN, Idriss H, Amtiaz Nadeem M (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026

    Article  CAS  Google Scholar 

  8. Di Mauro A, Fragalà ME, Privitera V, Impellizzeri G (2017) ZnO for application in photocatalysis: from thin films to nanostructures. Mater Sci Semicond Process 69:44–51

    Article  CAS  Google Scholar 

  9. Nguyen CH, Fu C-C, Juang R-S (2018) Degradation of methylene blue and methyl orange by palladiumdoped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J Clean Prod 202:413–427

    Article  CAS  Google Scholar 

  10. Kabouche S, Bellal B, Louafi Y, Trari M (2017) Synthesis and semiconducting properties of tin(II) sulfide: application to photocatalytic degradation of Rhodamine B under sun light. Mater Chem Phys 195:229–235

    Article  CAS  Google Scholar 

  11. Belaissa Y, Nibou D, Assadi AA, Bellal B, Trari M (2016) A new hetero-junction p-CuO/n-ZnO for the removal of amoxicillin by photocatalysis under solar irradiation. J. Taiwan Inst Chem Eng 68:254–265

    Article  CAS  Google Scholar 

  12. Mosca M, Macaluso R, Caruso F, Lo Muzzo V, Calì C (2015) The p-type doping of ZnO: Mirage or reality? In: Persano Adorno D, Pokutnyi S (eds) Advances in semiconductor research: physics of nanosystems, spintronics and technological applications. Nova Science Publishers Inc., New York, pp 245–282

    Google Scholar 

  13. Mosca M, Macaluso R, Calì C, Butté R, Nicolay S, Feltin E, Martin D, Grandjean N (2013) Optical, structural, and morphological characterisation of epitaxial ZnO films grown by pulsed-laser deposition. Thin Solid Films 53:55–59

    Article  CAS  Google Scholar 

  14. Boughelout A, Zebbar N, Macaluso R, Zohour Z, Bensouilah A, Zaffora A, Aida MS, Kechouane M, Trari M (2018) Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering. Optik—Inter. J Light and Electron Optics 174:77–85

    Article  CAS  Google Scholar 

  15. Zhang Y, Deng B, Zhang T, Gao D, Xu A-W (2010) Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J Phys Chem C 114:5073–5079

    Article  CAS  Google Scholar 

  16. Niu ZG (2014) Reduced graphene oxide-cuprous hybrid nanopowders: hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation. Mater Sci Semicond Process 23:78–84

    Article  CAS  Google Scholar 

  17. Zhang F, Dong G, Wang M, Zeng Y, Wang C (2018) Efficient removal of methyl orange using Cu2O as a dual function catalyst. Appl Surf Sci 444:559–568

    Article  CAS  Google Scholar 

  18. Bergum K, Riise HN, Gorantla SM, Monakhov E, Svensson BG. Thin film Cu2O for solar cell applications. In: 2017 IEEE 44th Photovoltaic Specialist Conference PVSC. 2017. pp 2770–2773.

  19. Wu I-C, Weng Y-H, Lu M-Y, Jen C-P, Fedorov VE, Chen WC, Wu MT, Kuo C-T, Wang H-C (2017) Nano-structure ZnO/Cu2O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection. Opt Express 25:7689

    Article  CAS  PubMed  Google Scholar 

  20. Zhou T, Zang Z, Wei J, Zheng J, Hao J, Ling F, Tang X, Fang L, Zhou M (2018) Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires. Nano Energy 50:118–125

    Article  CAS  Google Scholar 

  21. Boughelout A, Macaluso R, Crupi I, Megna B, Aida MS, Kechouane M (2019) Improved Cu2O/AZO heterojunction by inserting a thin ZnO interlayer grown by pulsed laser Deposition. J Electron Mater 48:438–4388

    Article  CAS  Google Scholar 

  22. Suchea M, Christoulakis S, Moschovis K, Katsarakis N, Kiriakidis G (2006) ZnO transparent thin films for gas sensor applications. Thin Solid Films 515:551

    Article  CAS  Google Scholar 

  23. Macaluso R, Mosca M, Calì C, Di Franco F, Santamaria M, Di Quarto F, Reverchon J-L (2013) Erroneous p-type assignment by Hall effect measurements in annealed ZnO films grown on InP. J Appl Phys 113:164508

    Article  CAS  Google Scholar 

  24. Macaluso R, Mosca M, Costanza V, D’Angelo A, Lullo G, Caruso F, Calì C, Di Franco F, Santamaria M, Di Quarto F (2014) Resistive switching behaviour in ZnO and VO2memristors grown by pulsed laser deposition. Electron Lett 50:262–263

    Article  CAS  Google Scholar 

  25. Sacco A, Di Bella MS, Gerosa M, Chiodoni A, Bianco S, Mosca M, Macaluso R, Calì C, Pirri CF (2015) Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers. Thin Solid Films 574:38–42

    Article  CAS  Google Scholar 

  26. Liu X, Xu M, Zhang X, Wang W, Feng X, Song A (2018) Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure. Appl Surf Sci 435:305–311

    Article  CAS  Google Scholar 

  27. Akir S, Hamdi A, Addad A, Coffinier Y, Boukherroub R, Omrani AD (2017) Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl Surf Sci 400:461–470

    Article  CAS  Google Scholar 

  28. Baradaran M, Ghodsi FE, Bittencourt C, Llobet E (2019) The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thin films. J Alloys Compds 788:289–301

    Article  CAS  Google Scholar 

  29. Kaur G, Mitra A, Yadav KL (2015) Influence of oxygen pressure on the growth and physicalproperties of pulsed laser deposited Cu2O thin films. J Mater Sci Mater Electron 26:9689–9699

    Article  CAS  Google Scholar 

  30. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134

    Article  Google Scholar 

  31. Cullity BD, Rstock S (2001) Elements of X-ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  32. Tauc J (1972) Optical properties of solids. North Holland, Abeles

    Google Scholar 

  33. Lahmar H, Azizi A, Schmerber G, Dinia A (2016) Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/n-AZO heterojunctions. RSC Adv 73:68663

    Article  CAS  Google Scholar 

  34. Patwari G, Bodo BJ, Singha R, Kailita PK (2013) Photoluminescence studies of H2O2 treated chemically synthesized ZnO nanostructures. Res J Chem Sci 3(2013):45–50

    CAS  Google Scholar 

  35. Kayanuma Y (1988) Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B 38:9797–9805

    Article  CAS  Google Scholar 

  36. Baral A, Khanuja M, Islam SS, Sharma R, Mehta BR (2017) Identification and origin of visible transitions in one dimensional (1D) ZnO nanostructures: excitation wavelength and morphology dependence study. J Lumin 183:383–390

    Article  CAS  Google Scholar 

  37. Angulo-Rocha J, Velarde-Escobar O, Yee-Rendón C, Atondo-Rubio G, Millan-Almaraz R, Camarillo-García E, García-Hipólito M, Ramos-Brito F (2017) Morphological, structural and optical properties of ZnO thin solid films conformed by nano leafs ormicron/submicron cauliflowers. J Lumin 185:306–315

    Article  CAS  Google Scholar 

  38. Zhaoa W, Wanga K, Li H, Yang Z, Liu Z, Sun J, Wang D, Liu S (2018) Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells. Sol Energ Mater Solar Cells 178:200–207

    Article  CAS  Google Scholar 

  39. Osipov A, Kukushkin SA, Feoktistov NA, Osipova A, Venugopal N, Verma GD, Kumar Gupta B, Mitra A (2012) Structural and optical properties of high quality ZnO thin film on Si with SiC buffer layer. Thin Solid Films 520:6836–6840

    Article  CAS  Google Scholar 

  40. Ji X, Song J, Wu T, Tian Y, Han B, Liu X, Wang H, Gui Y, Ding Y, Wang Y (2019) Fabrication of high-performance F and Al co-doped ZnO transparent conductive films for use in perovskite solar cells. Sol Energ Mater Solar Cells 190:6–11

    Article  CAS  Google Scholar 

  41. Coman T, Timpu D, Nica V, Vitelaru C, Rambu AP, Stoian G, Olaru M, Ursu C (2017) Sequential PLD in oxygen/argon gas mixture of Al-doped ZnO thin films with improved electrical and optical properties. Appl Surf Sci 418:456–462

    Article  CAS  Google Scholar 

  42. Vidya R, Ravindran P, Fjellvåg H, Svensson BG, Monakhov E, Ganchenkova M, Nieminen RM (2011) Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Phys Rev B 83:045206

    Article  CAS  Google Scholar 

  43. Félix-Quintero H, Angulo-Rocha J, Murrieta SH, Hernández AJ, Camarillo GE, Flores JMC, Alejo-Armenta C, García-Hipolito M, Ramos-Brito F (2017) Study on grow process and optical properties of ZnO microrods synthesized by hydrothermal method. J Lumin 182:107–113

    Article  CAS  Google Scholar 

  44. Soares AF, Tatumi SH, Mazzo TM, Rocca RR, Courrol LC (2017) Study of morphological and luminescent properties (TL and OSL) of ZnO nanocrystals synthetized by coprecipitation method. J Lumin 186:135–143

    Article  CAS  Google Scholar 

  45. Mariappan R, Ponnuswamy V, Suresh P (2012) Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct 52:500–513

    Article  CAS  Google Scholar 

  46. Ahn CH, Kim YY, Kim DC, Mohanta SK, Cho HK (2009) A comparative analysis of deep level emission in ZnO layers deposited by various methods. J Appl Phys 105:013502

    Article  CAS  Google Scholar 

  47. Dai Y, Zhang Y, Li QK, Nan CW (2002) Synthesis and optical properties of tetrapod-like zinc oxide nanorods. Chem Phys Lett 358:83

    Article  CAS  Google Scholar 

  48. Khranovskyy V, Lazorenko V, Lashkarev G, Yakimova R (2012) Luminescence anisotropy of ZnO microrods. J Lumin 132(10):2643

    Article  CAS  Google Scholar 

  49. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA (1996) Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. J Appl Phys 68:403–405

    CAS  Google Scholar 

  50. Leiter FH, Alves HR, Hofstaetter A, Hofmann DM, Meyer BK (2001) The oxygen vacancy as the origin of a green emission in undoped ZnO. Phys Status Solidi B 226:4–5

    Article  Google Scholar 

  51. Marin O, Tirado M, Budini N, Mosquera E, Figueroa C, Comedi D (2016) Photoluminescence from c-axis oriented ZnO films synthesized by sol- gel with diethanolamine as chelating agent. Mater Sci Semicond Process 56:59–65

    Article  CAS  Google Scholar 

  52. Xu CX, Sun XW, Zhang XH, Ke L, Chua SJ (2004) Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology 15:856

    Article  CAS  Google Scholar 

  53. Willander M, Nur O, Sadaf JR, Qadir MI, Zaman S, Zainelabdin A, Bano N, Hussain I (2021) Luminescence from Zinc Oxide nanostructures and polymers and their hybrid devices. Materials 3:2643

    Article  CAS  Google Scholar 

  54. Lin B, Fu Z, Jia Y (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943

    Article  CAS  Google Scholar 

  55. Hasabeldaim E, Ntwaeaborwa OM, Kroon RE, Coetsee E, Swart HC (2017) Effect of substrate temperature and post annealing temperature on ZnO: Zn PLD thin film properties. Optical Mater 74:1–11

    Article  Google Scholar 

  56. Wang J-C, Lou H-H, Xu Z-H, Cui C-X, Li Z-J, Jiang K, Zhang Y-P, Qu L-B, Shi W (2018) Natural sunlight driven highly efficient photocatalysis for simultaneous degradation of Rhodamine B and methyl orange using I/C codoped TiO2photocatalyst. J Hazard Mater 360:356–363

    Article  CAS  PubMed  Google Scholar 

  57. Sheikh MS, Sakhya AP, Maity R, Dutta A, Sinha TP (2019) Narrow band gap and optical anisotropy in double perovskite oxide Sm2NiMnO6: A new promising solar cell absorber. Sol Energy Mater Solar Cells 193:206–213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. M. Santamaria (Dipartimento di Ingegneria, UniversitàdegliStudi di Palermo) for the use of the XRD system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boughelout, A., Macaluso, R., Kechouane, M. et al. Photocatalysis of rhodamine B and methyl orange degradation under solar light on ZnO and Cu2O thin films. Reac Kinet Mech Cat 129, 1115–1130 (2020). https://doi.org/10.1007/s11144-020-01741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01741-8

Keywords

Navigation