Skip to main content
Log in

Removal of inorganic anions from drinking water supplies by membrane bio/processes

  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

This paper is designed to provide an overview of the main membrane-assisted processes that can be used for the removal of toxic inorganic anions from drinking water supplies. The emphasis has been placed on integrated process solutions, including the emerging issue of membrane bioreactors. An attempt is made to compare critically recently reported results, reveal the best existing membrane technologies and identify the most promising integrated membrane bio/processes currently being under investigation. Selected examples are discussed in each case with respect to their advantages and limitations compared to conventional methods for removal of anionic pollutants. The use of membranes is particularly attractive for separating ions between two liquid phases (purified and concentrated water streams) because many of the difficulties associated with precipitation, coagulation or adsorption and phase separation can be avoided. Therefore, membrane technologies are already successfully used on large-scale for removal of inorganic anions such as nitrate, fluoride, arsenic species, etc. The concentrated brine discharge and/or treatment, however, can be problematic in many cases. Membrane bioreactors allow for complete depollution but water quality, insufficiently stable process operation, and economical reasons still limit their wider application in drinking water treatment. The development of more efficient membranes, the design of cost-effective operating conditions, especially long-term operations without or with minimal membrane inorganic and/or biological fouling, and reduction of the specific energy consumption requirements are the major challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D:

dialysis

DD:

Donnan dialysis

DMB:

dialysis membrane bioreactor

ED:

electrodialysis

IEMB:

ion exchange membrane bioreactor

MCL:

maximum contaminant level

MF:

microfiltration

NF:

nanofiltration

RO:

reverse osmosis

TOC:

total organic carbon

UF:

ultrafiltration

US EPA:

United States Environmental Protection Agency

WHO:

World Health Organization

References

  • T Ahmed MJ Semmens (1992) ArticleTitleThe use of independently sealed microporous membranes for oxygenation of water: Model development J. Membr. Sci. 69 11–20

    Google Scholar 

  • Z Amor B Bariou N Mameri M Taky S Nicolas A Elmidaoui (2001) ArticleTitleFluoride removal from brackish water by electrodialysis Desalination 133 215–223

    Google Scholar 

  • AM Barreiros CM Rodrigues JPSG Crespo MAM Reis (1998) ArticleTitleMembrane bioreactor for drinking water denitrification Biop. Eng. 18 297–302

    Google Scholar 

  • RM Ben Aim MJ Semmens (2002) ArticleTitleMembrane bioreactors for wastewater treatment and reuse: A success story Water Sci. Technol. 47 1–5

    Google Scholar 

  • RA Bergman (1995) ArticleTitleMembrane softening versus lime softening in Florida: A cost comparison update Desalination 102 11–24

    Google Scholar 

  • J Bohdziewicz M Bodzek E Wasik (1999) ArticleTitleThe application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater Desalination 121 139–147

    Google Scholar 

  • P Bouillot A Canales A Pareilleux A Huyard G Goma (1990) ArticleTitleMembrane bioreactors for the evaluation of maintenance phenomena in wastewater treatment J. Ferment. Bioeng. 69 178–183

    Google Scholar 

  • P Brandhuber G Amy (1998) ArticleTitleAlternative methods for membrane filtration of arsenic from drinking water Desalination 117 1–10

    Google Scholar 

  • K Brindle T Stephenson (1996) ArticleTitleThe application of membrane biological reactors for the treatment of wastewaters of special interest Biotechnol. Bioeng. 49 601–610

    Google Scholar 

  • E Carraro EH Bugliosi L Meucci C Baiocchi G Gilli (2000) ArticleTitleBiological drinking water treatment processes, with special reference to mutagenicity Water Res. 34 3042–3054

    Google Scholar 

  • Y Çengeloglu A Tor E Kir M Ersoz (2003) ArticleTitleTransport of hexavalent chromium through anion-exchange membranes Desalination 154 239–246

    Google Scholar 

  • G Centi S Perathoner (2003) ArticleTitleRemediation of water contamination using catalytic technologies Appl. Catal. B: Environ. 41 15–29

    Google Scholar 

  • J Chang J Manem A Beaubien (1993) ArticleTitleMembrane bioprocesses for the denitrification of drinking water supplies J. Membr. Sci. 80 233–239

    Google Scholar 

  • N Cicek (2003) ArticleTitleA review of membrane bioreactors and their potential application in the treatment of agricultural wastewater Can. Biosyst. Eng. 45 6.37–6.49

    Google Scholar 

  • JD Coates RT Anderson (2000) ArticleTitleEmerging techniques for anaerobic bioremediation of contaminated environments Trends Biotechnol. 18 408–412

    Google Scholar 

  • D Cohen HM Conrad (1998) ArticleTitle65,000 GPD fluoride removal membrane system in Lakeland, California, USA Desalination 117 19–35

    Google Scholar 

  • P Cote JL Bersillon G Faup (1988) ArticleTitleBubble free aeration using membranes: Process analysis J. Water Pollut. Control Fed. 60 1986–1992

    Google Scholar 

  • Crespo JG, Reis AM, Fonseca AD & Almeida JS (1999) Ion Exchange Membrane Bioreactor for Water Denitrification. Portuguese National Patent No. 102385 N.

  • Crespo JG & Reis AM (2001) Treatment of Aqueous Media Containing Electrically Charged Compounds. International Patent PCT-WO 01/40118 A1.

  • EH Cwirko RG Carbonell (1990) ArticleTitleA theoretical analysis of Donnan dialysis across charged porous membranes J. Membr. Sci. 48 155–179

    Google Scholar 

  • K Daub G Emig M-J Chollier M Callant R Dittmeyer (1999) ArticleTitleStudies on the use of catalytic membranes for reduction of nitrate in drinking water Chem. Eng. Sci. 54 1577–1582

    Google Scholar 

  • B Delanghe F Nakamura H Myoga Y Magara (1994) ArticleTitleBiological denitrification with ethanol in a membrane bioreactor Environ. Technol. 15 61–70

    Google Scholar 

  • J DeZuane (1997) Handbook of Drinking Water Quality EditionNumber2 John Wiley & Sons New York

    Google Scholar 

  • CK Diawara SM Lô M Rumeau M Pontie O Sarr (2003) ArticleTitleA phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water J. Membr. Sci. 219 103–112

    Google Scholar 

  • A Dieye C Larchet B Auclair C Mar-Diop (1998) ArticleTitleElimination des fluorures par la dialyse ionique croisée Eur. Polymer J. 34 67–75

    Google Scholar 

  • J Duan J Gregory (2003) ArticleTitleCoagulation by hydrolysing metal salts Adv. Coll. Inter. Sci. 100–102 475–502

    Google Scholar 

  • A Elmidaoui F Elhannouni M Taky L Chay MAM Sahli L Echihabi M Hafsi (2002) ArticleTitleOptimization of nitrate removal operation from ground water by electrodialysis Sep. Purif. Technol. 29 235–244

    Google Scholar 

  • SJ Ergas AF Reuss (2001) ArticleTitleHydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor J. Water SRT–Aqua 50 161–171

    Google Scholar 

  • AD Fonseca JG Crespo JS Almeida AM Reis (2000) ArticleTitleDrinking water denitrification using a novel ion-exchange membrane bioreactor Environ. Sci. Technol. 2000 34 1557–1562

    Google Scholar 

  • M Gander B Jefferson S Judd (2000) ArticleTitleAerobic MBRs for domestic wastewater treatment: A review with cost considerations Sep. Purif. Technol. 18 119–130

    Google Scholar 

  • H Garmes F Persin J Sandeaux G Pourcelly M Mountadar (2002) ArticleTitleDefluoridation of groundwater by a hybrid process combining adsorption and Donnan dialysis Desalination 145 87–291

    Google Scholar 

  • A Hafiane D Lemordant M Dhahbi (2000) ArticleTitleRemoval of hexavalent chromium by nanofiltration Desalination 130 305–312

    Google Scholar 

  • G Hagmeyer R Gimbel (1998) ArticleTitleModelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values Desalination 117 247–256

    Google Scholar 

  • B Han T Runnells J Zimbron R Wickramasinghe (2002) ArticleTitleArsenic removal from drinking water by flocculation and microfiltration Desalination 145 293–298

    Google Scholar 

  • KS Haugen MJ Semmens PJ Novak (2002) ArticleTitleA novel in situ technology for the treatment of nitrate contaminated groundwater Water Res. 36 3497–3506

    Google Scholar 

  • F Hell J Lahnsteiner H Frischherz G Baumgartner (1998) ArticleTitleExperience with full-scale electrodialysis for nitrate and hardness removal Desalination 117 173–180

    Google Scholar 

  • M Hichour F Persin J Sandeaux C Gavach (2000) ArticleTitleFluoride removal from waters by Donnan dialysis Sep. Purif. Technol. 18 1–11

    Google Scholar 

  • CM Ho SK Tseng YJ Chang (2001) ArticleTitleAutotrophic denitrification via a novel membrane-attached biofilm reactor Lett. Appl. Microbiol. 33 201–205

    Google Scholar 

  • WSW Ho KK Sirkar (1992) Membrane Handbook Van Nostrand Reinhold New York

    Google Scholar 

  • JG Jacangelo RR Trussell M Watson (1997) ArticleTitleRole of membrane technology in drinking water treatment in the United States Desalination 113 119–127

    Google Scholar 

  • PE Jackson (2001) ArticleTitleDetermination of inorganic ions in drinking water by ion chromatography TrAC Trends. Anal. Chem. 20 320–329

    Google Scholar 

  • A Kapoor T Viraraghavan (1997) ArticleTitleNitrate removal from drinking water–review J. Environ. Eng. 123 371–380

    Google Scholar 

  • K Kimura M Nakamura Y Watanabe (2002) ArticleTitleNitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration Water Res. 36 1758–1766

    Google Scholar 

  • K-C Lee BE Rittmann (2000) ArticleTitleA novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water Wat Sci. Technol. 41 219–226

    Google Scholar 

  • K-C Lee BE Rittmann (2002) ArticleTitleApplying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water Water Res. 36 2040–2052

    Google Scholar 

  • K-C Lee BE Rittmann (2003) ArticleTitleEffects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor Water Res. 37 1551–1556

    Google Scholar 

  • R Levenstein D Hasson R Semiat (1996) ArticleTitleUtilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes J. Membr. Sci. 116 77–92

    Google Scholar 

  • A Lhassani M Rumeau D Benjelloun M Pontie (2001) ArticleTitleSelective demineralization of water by nanofiltration. Application to the defluorination of brackish water. Water Res. 35 3260–3264

    Google Scholar 

  • BO Mansel ED Schroeder (1999) ArticleTitleBiological denitrification in a continuous flow membrane reactor Water Res. 33 1845–1850

    Google Scholar 

  • BO Mansel ED Schroeder (2002) ArticleTitleHydrogenotrophic denitrification in a microporous membrane bioreactor Wat Res. 36 4683–4690

    Google Scholar 

  • PR McCleaf ED Schroeder (1995) ArticleTitleDenitrification using a membrane immobilized biofilm J. AWWA 87 IssueID3 77–86

    Google Scholar 

  • B Min PJ Evans AK Chu BE Logan (2004) ArticleTitlePerchlorate removal in sand and plastic media bioreactors Water Res. 38 47–60

    Google Scholar 

  • R Nerenberg BE Rittmann I Najm (2002) ArticleTitlePerchlorate reduction in a hydrogen-based membrane-biofilm reactor J. AWWA 94 IssueID11 103–114

    Google Scholar 

  • H Nicoll (2001) ArticleTitleNanofiltration makes surface water drinkable Filtr. Sep. 38 IssueID1 22–23

    Google Scholar 

  • RY Ning (2002) ArticleTitleArsenic removal by reverse osmosis Desalination 143 237–241

    Google Scholar 

  • L Paugam S Taha J Cabon G Dorange (2002) ArticleTitleElimination of nitrate ions in drinking waters by nanofiltration Desalination 152 271–274

    Google Scholar 

  • M Petrović S Gonzalez D Barceló (2003) ArticleTitleAnalysis and removal of emerging contaminants in wastewater and drinking water TrAC Trends Anal. Chem. 22 685–696

    Google Scholar 

  • SD Richardson (2003) ArticleTitleDisinfection by-products and other emerging contaminants in drinking water TrAC Trends Anal. Chem. 22 666–684

    Google Scholar 

  • SMC Ritchie D Bhattacharyya (2002) ArticleTitleMembrane-based hybrid processes for high water recovery and selective inorganic pollutant separation J. Hazard Mat. 92 21–32

    Google Scholar 

  • BE Rittmann R Nerenberg K-C Lee I Najm TE Gillogly GE Lehman SS Adham (2004) ArticleTitleThe hydrogen-based hollow-fiber membrane biofilm reactor (HFMBfR) for removing oxidized contaminants Water Sci. Technol. 14 127–133

    Google Scholar 

  • DK Roggy PJ Novak RM Hozalski LW Clapp MJ Semmens (2002) ArticleTitleMembrane gas transfer for groundwater remediation: Chemical and biological fouling Environ. Eng. Sci. 19 563–574

    Google Scholar 

  • V Roquebert S Booth RS Cushing G Crozes E Hansen (2000) ArticleTitleElectrodialysis reversal (EDR) and ion exchange as polishing treatment for perchlorate treatment Desalination 131 285–291

    Google Scholar 

  • K Salem J Sandeaux J Molénat R Sandeaux C Gavach (1995) ArticleTitleElimination of nitrate from drinking water by electrochemical membrane processes Desalination 101 123–131

    Google Scholar 

  • T Sata (2000) ArticleTitleStudies on anion exchange membranes having permselectivity for specific anions in electrodialysis-effect of hydrophilicity of anion exchange membranes on permselectivity of anions J. Membr. Sci. 167 1–31

    Google Scholar 

  • Y Sato M Kang T Kamei Y Magara (2002) ArticleTitlePerformance of nanofiltration for arsenic removal Water Res. 36 3371–3377

    Google Scholar 

  • JJ Schoeman A Steyn (2003) ArticleTitleNitrate removal with reverse osmosis in a rural area in South Africa Desalination 155 15–26

    Google Scholar 

  • MJ Semmens (1991) ArticleTitleBubbleless aeration Water Eng. Manage. 138 IssueID4 18–19

    Google Scholar 

  • MJ Semmens Essila (2001) ArticleTitleModeling biofilms on gas-permeable supports: Flux limitations J. Environ. Eng. 127 126–133

    Google Scholar 

  • DR Simbeck (2004) ArticleTitleCO2 capture and storage–the essential bridge to the hydrogen economy Energy 29 1633–1641

    Google Scholar 

  • Smith CW, Di Gregorio D & Talcott RM (1969) The use of ultrafiltration membrane for activated sludge separation. Proceedingds of the 24th Annual Purdue Industrial Waste Conference, West Lafayette, Indiana, USA (pp 1300–1310)

  • AH Smith PA Lopipero MN Bates CM Steinmaus (2002) ArticleTitleArsenic epidemiology and drinking water standards Science 296 2145–2146

    Google Scholar 

  • M Thanuttamavong K Yamamoto J-I Oh KH Choo SJ Choi (2002) ArticleTitleRejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment Desalination 145 257–264

    Google Scholar 

  • T Urase J-I. Oh K Yamamoto (1998) ArticleTitleEffect of pH on rejection of different species of arsenic by nanofiltration Desalination 117 11–18

    Google Scholar 

  • US EPA (1998) Federal Register 63 (170) FR 44511f.

  • US EPA (2002) Perchlorate environmental contamination: Toxicological review and risk characterization, External Review Draft, NCEA-1-0503, January 16, 2002

  • B Bruggen ParticleVan der K Everaert D Wilms C Vandecasteele (2001) ArticleTitleApplication of nanofiltration for removal of pesticides, nitrate and hardness from ground water: Rejection properties and economic evaluation J. Membr. Sci. 193 239–248

    Google Scholar 

  • B Bruggen ParticleVan der A Koninckx C Vandecasteele (2004) ArticleTitleSeparation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration Water Res. 38 1347–1353

    Google Scholar 

  • S Velizarov JG Crespo AM Reis (2002) ArticleTitleIon exchange membrane bioreactor for selective removal of nitrate from drinking water: Control of ion fluxes and process performance Biotechnol Prog 18 296–302

    Google Scholar 

  • Velizarov S., Matos C, Crespo JG & Reis AM (2004) Removal of perchlorate and nitrate from drinking water in an ion exchange membrane bioreactor. Proceedings of the European Symposium on Environmental Biotechnology ESEB 2004, April 25–28, Oostende, Belgium (pp 99–102)

  • Velizarov S, Matos C, Sequeura A, Reis AM & Crespo JG (2003b) Removal of trace mono-valent inorganic pollutants using the ion exchange membrane bioreactor concept. Proceedings of the Membrane Science and Technology Conference “PERMEA 2003”, September 7–11, Tatranské Matliare, Slovakia (Conference CD-ROM)

  • S Velizarov AM Reis JG Crespo (2003a) ArticleTitleRemoval of trace mono-valent inorganic pollutants in an ion exchange membrane bioreactor: Analysis of transport rate in a denitrification process J. Membr. Sci. 217 269–284

    Google Scholar 

  • S Velizarov CM Rodrigues AM Reis JG Crespo (2000) ArticleTitleMechanism of charged pollutants removal in an ion exchange membrane bioreactor: Drinking water denitrification Biotechnol Bioeng 71 245–254

    Google Scholar 

  • EM Vrijenhoek JJ Waypa (2000) ArticleTitleArsenic removal from drinking water by a “loose” nanofiltration membrane Desalination 130 265–277

    Google Scholar 

  • WHO (2003) Draft guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva. http://www.who.int/water_sanitation_health/GDWQ/

  • T Wintgens J Rosen T Melin C Brepols K Drensla N Engelhardt (2003) ArticleTitleModelling of a membrane bioreactor system for municipal wastewater treatment J. Membr. Sci. 216 55–65

    Google Scholar 

  • C Wisniewski F Persin T Cherif R Sandeaux G Grasmick C Gavach F Lutin (2002) ArticleTitleUse of a membrane bioreactor for denitrification of brine from an electrodialysis process Desalination 149 331–336

    Google Scholar 

  • J Yoon Y Yoon G Amy J Cho D Foss T-H Kim (2003) ArticleTitleUse of surfactant modified ultrafiltration for perchlorate (ClO4) removal Water Res. 37 2001–2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlozar Velizarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velizarov, S., Crespo, J.G. & Reis, M.A. Removal of inorganic anions from drinking water supplies by membrane bio/processes. Rev Environ Sci Biotechnol 3, 361–380 (2004). https://doi.org/10.1007/s11157-004-4627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-004-4627-9

Keywords

Navigation