Skip to main content
Log in

Antioxidant enzyme responses of plants to heavy metal stress

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Heavy metal pollutions caused by natural processes or anthropological activities such as metal industries, mining, mineral fertilizers, pesticides and others pose serious environmental problems in present days. Evidently there is an urgent need of efficient remediation techniques that can tackle problems of such extent, especially in polluted soil and water resources. Phytoremediation is one such approach that devices effective and affordable ways of engaging suitable plants to cleanse the nature. Excessive accumulation of metal in plant tissues are known to cause oxidative stress. These, in turn differentially affect other plant processes that lead to loss of cellular homeostasis resulting in adverse affects on their growth and development apart from others. Plants have limited mechanisms of stress avoidance and require flexible means of adaptation to changing. A common feature to combat stress factors is synchronized function of antioxidant enzymes that helps alleviating cellular damage by limiting reactive oxygen species (ROS). Although, ROS are inevitable byproducts from essential aerobic metabolisms, these are needed under sub-lethal levels for normal plant growth. Understanding the interplay between oxidative stress in plants and role of antioxidant enzymes can result in developing plants that can overcome oxidative stress with the expression of antioxidant enzymes. These mechanisms have been proving to have immense potential for remediating these metals through the process of phytoremediation. The aim of this review is to assemble our current understandings of role of antioxidant enzymes of plants subjected to heavy metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAT:

Catalase

GR:

Glutathione reductase

GSH:

Glutathione

NADPH:

Nicotinamide adenine dinucleotide phosphate

POD:

Guaiacol peroxidase

POX:

Peroxidase

PPO:

Polyphenoloxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Ahmed A, Hasnain A, Akhtar S, Hussain A, Yasin AG, Wahid A, Mahmood S (2010) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). Afr L Biotechnol 9(33):5441–5444

    Google Scholar 

  • Aiyar J, Buerkovitis HJ, Floyd RA, Borges K (1991) Reaction of chromium (VI) with glutathione or with hydrogen peroxide: Identification of reactive intermediates and their role in chromium (VI)—induced DNA damage. Environ Health Persp 92:53–62

    Article  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    CAS  Google Scholar 

  • Alscher R, Donahue JL, Cramer CL (1997) Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Andrade SAL, Gratão PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75:1363–1370

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase* a hydrogen peroxide scavenging enzyme in plants. Plant Physiol 85:235–241

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux P (eds) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Asada K (1996) Radical production and scavenging in chloroplasts. In: Baker N (ed) Photosynthesis and the environment. Kluwer, Atlantic Canada Society for Microbial Ecology, Dordrecht, Halifax, pp 123–150

    Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Asada K, Miyake C, Ogawa K, Hossain MA (1996) Plant peroxidases: biochemistry and physiology. In: Obinger C, Burner U, Ebermann R, Penel C, Greppin S (eds) Fourth international symposium proceedings. University of Agriculture Vienna and University of Geneva, Switzerland, pp 163–167

    Google Scholar 

  • Ashraf M, Finkemeie I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Physiol Plan 132:272–281

    Article  Google Scholar 

  • Babaoğlu S, Kuşvuran Ş, Ellialtioğlu Ş, Açik L, Adiguzel N (2009) Antioxidative enzyme response of heavy metal hyperaccumulator Alyssum Murale TO Ni+2 stress. Online Int J Agron Biol 2(5):194–197

    Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants-a feasibility study. In: Hinchee RE, Olfenbuttel RF (eds) In situ bioreclamation. Butterworth-Heinemann, Stoneham, pp 539–544

    Google Scholar 

  • Beladi M, Habibi D, Kashani A, Paknejad F, Nooralvandi T (2011) Phytoremediation of lead and copper by sainfoin (Onobrychis vicifolia): role of antioxidant enzymes and biochemical biomarkers. American-Eurasian J Agric Environ Sci 10(3):440–449

    Google Scholar 

  • Bender J, Weigl H, Wegner U, Jager H (1994) Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development. Environ Pollut 84:15–21

    Article  CAS  Google Scholar 

  • Bielawski W, Joy KW (1986) Reduced and oxidized glutathione and glutathione reductase activity in tissues of Pisum sativum. Planta 169(2):267–272

    Article  CAS  Google Scholar 

  • Boojar MMA, Tavakoli Z (2010) Role of antioxidant enzyme responses and phytochelatins in tolerance strategies of Alhagi camelorum Fisch growing on copper mine. Acta Bot Croat 69(1):107–121

    CAS  Google Scholar 

  • Boon EM, Downs A, Marcey D (2007) “Proposed mechanism of catalase”. Catalase: H2O2: H2O2 oxidoreductase: catalase structural tutorial. Retrieved -02-11

  • Breckle CW (1991) Growth under heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 351–373

    Google Scholar 

  • Caregnato FF, Koller CE, MacFarlane GR, Moreira JCF (2008). The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 56:1119–1127

    Google Scholar 

  • Chambers JC, Sidle RC (1991) Fate of heavy metal in abandoned lead, zinc tailing ponds: I vegetation. J Environ Qual 20:745–748

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous waste. Noyes Data Crop., Park Ridge, pp 50–76

    Google Scholar 

  • Chaoui AS, Mazhoudi MHG, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Cho M, Chardonnens AN, Dietz KJ (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293

    Article  CAS  Google Scholar 

  • Collen J, Davison IR (1999) Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ 22:1143–1151

    Article  CAS  Google Scholar 

  • Creissen G, Edwards EA, Enard C, Wellburn A, Mullineaux P (1992) Molecular characterisation of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J 2(1):129–131

    CAS  Google Scholar 

  • Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57(1):34–39

    CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus during the early stages of metal assimilation. Physiol Plant 110:512–517

    Article  CAS  Google Scholar 

  • Dalton DA (1995) Oxidative stress and antioxidant defenses in biology. In: Ahmad S (ed) Chapman and Hall, New York, pp 298–355

  • De Vos RCH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper‐induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  Google Scholar 

  • Di Toppi LS, Lambardi M, Pazzagli L, Cappugi G, Durante M, Gabbrielli R (1999) Response to cadmium in carrot in vitro plants and cell suspension cultures. Plant Sci 137:119–129

    Article  Google Scholar 

  • Dietz KJ, Kramer U, Baier M (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

    Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997) Plant glutathione peroxidases. Physiol Plant 100:237–240

    Article  Google Scholar 

  • Fayigaa OA, Maa QL, Cao X, Rathinasabapathi B (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Env Poll 132:289–296

    Article  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  • Foyer CF, Nector G (2000) Oxygen processing in photosynthesis regulation and signaling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat J-F, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    CAS  Google Scholar 

  • Fridovich I (1989) Superoxide dismutases: an adaptation to paramagnetic gas. J Biol Chem 264:7761–7764

    CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. Biores Technol 77(3):229–236

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  CAS  Google Scholar 

  • Gaspar Th, Penel C, Hagège D, Greppin H (1991) Peroxidases in plant growth differentiation and development processes. In: Lobarzewski J, Greppin H, Penel C, Gaspar TH (eds) Biochemical molecular and physiological aspects of plant peroxidases. Univ M. Curie-Sklodowska Lublin & Univ Geneva, Switzerland Press, Switzerland, pp 249–280

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of It’s byproducts. As J Energy Env 6(04):214–231

    Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Pilar Bernal M, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  CAS  Google Scholar 

  • Goyer RA (1997) Toxic and essential metal interactions. Ann Rev Nutr 17:37–50

    Article  CAS  Google Scholar 

  • Grant CM, Macivr FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Gen 29:511–515

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E‐L, Zenk MH (1987) Phytochelatins a class of heavy‐metal‐binding peptides from plants are functional analogous to metallothioneins. Proc Nat Acad Sci USA 8:439–443

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–12

    Article  CAS  Google Scholar 

  • Hameed A, Qadri N, Tabasum M, Siddiqi TO, Iqbal M (2011) Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure. Braz J Plant Physiol 23(1)

  • Hartman WJ Jr (1975) An evaluation of land treatment of municipal wastewater and physical sitting of facility installations. US Department of Army, Washington DC

    Google Scholar 

  • Hernandez-Jimenez MJ, Lucas MM, de Felipe MR (2002) Antioxidant defence and damage in senescing lupin nodules. Plant Physiol Biochem 40:645–657

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113.

    Google Scholar 

  • Joseph B, Jini D (2010) Insight into the role of antioxidant enzymes for salt tolerance in plants. Int J Bot 6:456–464.

    Article  Google Scholar 

  • Karataglis S, Moustakas M, Symeonidis L (1991) Effect of heavy metals on isoperoxidases of wheat. Biol Plant 33:3–9

    Article  CAS  Google Scholar 

  • Kumar G, Rai P (2007) Comparative genotoxic potential of mercury and cadmium in soybean. Turk J Biol 31:13–18

    CAS  Google Scholar 

  • Lee H, Jo J, Son D (1998) Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim Biophys Acta 1395:309–314

    CAS  Google Scholar 

  • Leonard SS, Harris GK, Shi XL (2004) Metal-induced oxidative stress and signal transduction. Free Rad Biol Med 37:1921–1942

    Article  CAS  Google Scholar 

  • Li M, Hu CW, Zhu Q, Chen L, Kong ZM, Liu ZL (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the micro-alga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. J Plant Growth Regul 30:151–155

    Article  CAS  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives*. J Zhejiang Univ Sci B 9(3):210–220

    Google Scholar 

  • Luo Z-B, He X-J, Chen L, Tang L, Gao S, Chen F (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Bio 12(1):119–124

    CAS  Google Scholar 

  • Mac Farlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove Avicennia marina. Mar Pollut Bull 42:233–240

    Article  CAS  Google Scholar 

  • Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Polon 48:687–698

    CAS  Google Scholar 

  • Malekzadeh P, Khara J, Farshian S, Jamal-Abad AK, Rahmatzadeh S (2007) Cadmium toxicity in maize seedlings: changes in antioxidant enzyme activities and root growth. Pak J Biol Sci 10:127–131

    Article  CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, El Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill). Plant Sci 127:129–137

    Article  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress polish. J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Miller RR (1996) Phytoremediation: technology overview report. http://www.clu-in.org/download/toolkit/phyto_o.pdf

  • Mittler R (2002) Oxidative stress antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mocquot B, Vangronsvel DJ, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth mineral and chlorophyll contents and enzyme activities. Plant Soil 82:287–300

    Google Scholar 

  • Morita S, Tasaka M, Fujisawa H, Ushimaru T, Tsuji H (1994) A cDNA clone encoding a rice catalase isozyme. Plant Physiol 105:1015–1016

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione. Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 499:249–279

    Article  Google Scholar 

  • Odjegba VJ, Fasidi IO (2007) Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress. Rev Biol Trop (Int J Trop Biol) 55(3–4):815–823

    CAS  Google Scholar 

  • Online dictionary.org. http://www.websters-online-dictionary.org/definitions/Superoxide%20Dismutase

  • Orhanl H, Vermeulen NPE, Tump C, Zappey H, Meerman, JHN (2004) Simultaneous determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography–tandem mass spectrometry as non-invasive biomarkers for oxidative damage. J Chromatogr B 799:245–254

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(2):95–102

    Article  CAS  Google Scholar 

  • Prasad KVSK, Paradha SP, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    Article  CAS  Google Scholar 

  • Radić S, Babić M, Skobić D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73:336–342

    Article  Google Scholar 

  • Rai V, Vaypayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments oxidative stress defence system nitrate reduction proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159

    Article  CAS  Google Scholar 

  • Rama Devi S, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail) a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  Google Scholar 

  • Ranieri A, Schenone G, Lencioni L, Soldatini GFJ (1994) Detoxificant enzymes in pumpkin grown in polluted ambient ai. Environ Qual 23:360–364

    Article  CAS  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Rendon JL, Pardo JP, Hernandez GM, Dominquez AR, Hernandez-Arana A (1995) Denaturing behaviour of glutathione reductase from cyanobacterium Spirulina maxima in guanidine hydrochloride. Arch Biochem Biophys 318:264–270

    Article  CAS  Google Scholar 

  • Sadowsky MJ (1999) Phytoremediation: past promises and future practices. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Plant–microbe interactions proceedings of the 8th international symposium on microbial ecology

  • Sahw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Presad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 84–126

    Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251.

    Google Scholar 

  • Salt (2004) http://scienceblog.com/community/older/2004/7/20046707.shtm

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility plant accumulation and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Google Scholar 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems H2O2 content and differentiation in pine (Pinus sylvestris) roots. Plant Physiol 127:887–892

    Article  CAS  Google Scholar 

  • Sehmer L, Fontaine V, Antoni F, Dizengremel P (1998) Physiol Plant 102:605–611

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shanker KA, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedling of Phaseolus aureus. Biol Plant 37:587–596

    Article  CAS  Google Scholar 

  • Shi X, Dalal NS (1989) Chromium (V) and hydroxyl radical formation during the glutathione reductase—catalyzed reduction of chromium (VI). Biochem Biophys Res 163:627–634

    Article  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts B, Semane HP, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd. Plant Physiol Biochem 43:437–444

    Article  CAS  Google Scholar 

  • Sprecher SL, Stewart AB, Brazil JM (1993) Peroxidase changes as indicators of herbicide-induced stress in aquatic plants. J Aquat Plant Manage 31:45–50

    Google Scholar 

  • Srivastava HS (1999) Biochemical defence mechanisms of plants to increased levels of ozone and other atmospheric pollutants. Curr Sci 76:525–533

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal-ions. Free Rad Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbate depenslent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26:1425–1431

    CAS  Google Scholar 

  • Tangahu VB, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As Pb and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/((2011))/939161

  • Teisseire H, Guy V (2000) Copper‐induced change in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153:65–72

    Article  CAS  Google Scholar 

  • Utsunamyia T (1980) Jap Pat Appli 55–72

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GW (1996) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci 114:11–18

    Google Scholar 

  • Wang H, Liu RL, Jin JY (2009) Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biologia Plantarum 53:191–194

    Article  CAS  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  Google Scholar 

  • Wu F, Zhang G, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes co‐ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Fulekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaduri, A.M., Fulekar, M.H. Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11, 55–69 (2012). https://doi.org/10.1007/s11157-011-9251-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-011-9251-x

Keywords

Navigation