Skip to main content
Log in

Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater

  • Mini-Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The present review emphasizes on the use of Polyphenol oxidase (PPO) enzyme in the bioremediation of phenolic contaminants from industrial wastewater. PPO is a group of enzyme that mainly exists in two forms; tyrosinase (E.C. 1.14.18.1) and laccase (E.C. 1.10.3.1) which are widely distributed among microorganisms, plants and animals. These oxidoreductive enzymes remain effective in a wide range of pH and temperature, particularly if they are immobilized on some carrier or matrices, and they can degrade a wide variety of mono and/or diphenolic compounds. However, high production costs inhibit the widespread use of these enzymes for remediation in industrial scale. Nevertheless, bench studies and field studies have shown enzymatic wastewater treatment to be feasible options for biodegradation of phenols through biological route. Nanomaterials-PPO conjugates have been also applied for removal of phenols which has successfully lower down the drawbacks of enzymatic water treatment. Therefore in this article various approaches and current state of use of PPO in the bioremediation of wastewater, as well as the benefits and disadvantages associated with the use of such enzymes have been overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PPO:

Polyphenol oxidase

SIR:

Solvent-impregnated resin

References

  • Abadulla E, Robra KH, Gübitz GM, Silva LM, Cavaco-Paulo A (2000a) Enzymatic decolorization of textile dyeing effluents. Text Res J 70:409–414

    CAS  Google Scholar 

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000b) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    CAS  Google Scholar 

  • Adeyemi O, Oginni O, Osubor CC, Oloyede OB, Oladiji AT, Adebayo EA (2009) Effect of water contaminated with phthalate, benzene and cyclohexane on Clarias gariepinus’ cellular system. Food Chem Toxicol 47:1941–1944

    CAS  Google Scholar 

  • Ahmet C, Emine S, Melike Y, Ertugrul S (2007) Polyphenol oxidase potentials of three wild mushroom species harvested from Liser High Plateau, Trabzon. Food Chem 103:1426–1433

    Google Scholar 

  • Akay G, Erhan E, Keskinler B, Algur OF (2002) Removal of phenol from wastewater using membrane-immobilized enzymes: part II. Cross-flow filtration. J Membrane Sci 206:61–68

    CAS  Google Scholar 

  • Ali S, Fernandez-Lafuente R, Cowan DA (1998) Meta-pathway degradation of phenolics by thermophilic Bacilli. Enzyme Microb Technol 23:462–468

    Google Scholar 

  • An HR, Park HH, Kim ES (2001) Cloning and expression of thermophilic catechol 1,2-dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiol Lett 195:17–22

    CAS  Google Scholar 

  • Arıca MY (2000) Immobilization of polyphenol oxidase on carboxymethylcellulose hydrogel beads: preparation and characterization. Polym Int 49:775–781

    Google Scholar 

  • Atlow SC, Bonadonna-Aparo L, Klibanov AM (1984) Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnol Bioeng 26:599–603

    CAS  Google Scholar 

  • Belitz HD, Grosch W, Schieberle P (2009) Food chemistry. 4th Revised and extended edition. Springer, Berlin, pp 105–107

  • Bevilaqua JV, Cammarota MC, Freire DMG, SantAnna GL Jr (2002) Phenol removal through combined biological and enzymatic treatments. Braz J Chem Eng 19:151–158

    CAS  Google Scholar 

  • Bodzek M, Bohdziewicz J, Kowalska M (1994) Preparation of membrane-immobilised enzymes for phenol decomposition. J Chem Technol Biotechnol 61:231–239

    CAS  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549

    CAS  Google Scholar 

  • Burton SG, Duncan JR, Kaye PT, Rose PD (1993) Activity of mushroom polyphenol oxidase in organic medium. Biotechnol Bioeng 42:938–944

    CAS  Google Scholar 

  • Calabrò V, Curcio S, Paola MGD, Iorio G (2009) Optimization of membrane bioreactor performances during enzymatic oxidation of waste bio-polyphenols. Desalination 236:30–38

    Google Scholar 

  • Cano PM, de Begona A, Gloria L, Mariana S (1997) Improvement of Frozen banana (Musa cavendisher, C. Venana) colour by blanching: relationship between browning, phenols and poly phenol oxidase and peroxidase activities. Z Lebnsm unters Forsch A 204:60–65

    CAS  Google Scholar 

  • Chacko JT, Subramaniam K (2011) Enzymatic degradation of azo dyes—a review. Int J Environ Sci 1:1250–1260

    Google Scholar 

  • Chazarra S, Garcia-Carmona F, Cabanes J (2001) Evidence for a tetrameric form of iceberg lettuce (Lactuca sativa L.) polyphenol oxidase: purification and characterization. J Agric Food Chem 49:4870–4875

    CAS  Google Scholar 

  • Chung TP, Tseng HY, Juang RS (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38:1497–1507

    CAS  Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96

    CAS  Google Scholar 

  • Cloete TE, Kwaadsteniet MD, Botes M, Lpez-Romero JM (2010) Nanotechnology in water treatment applications. Caister Academic press, Norfolk, UK

    Google Scholar 

  • Cooper VA, Nicell JA (1996) Removal of phenols from a foundry wastewater using horseradish peroxidase. Water Res 30:954–964

    CAS  Google Scholar 

  • Corvini PFX, Shahgaldian P (2010) LANCE: laccase-nanoparticle conjugates for the elimination of micropollutants (endocrine disrupting chemicals) from wastewater in bioreactors. Rev Environ Sci Biotechnol 9:23–27

    CAS  Google Scholar 

  • Crawford RL, Ederer MM (1999) Phylogeny of Sphingomonas species that degrade pentachlorophenol. J Ind Microbiol Biotechnol 23:320–325

    CAS  Google Scholar 

  • Cuypers R, Sudholter EJ, Zuilhof H (2010) Hydrogen bonding in phosphine oxide/phosphate-phenol complexes. ChemPhysChem 11:2230–2240

    CAS  Google Scholar 

  • Dec J, Bollag JM (1990) Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions. Arch Environ Contam Toxicol 19:543–550

    CAS  Google Scholar 

  • Dodor DE, Hwang H-M, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb Technol 35:210–217

    CAS  Google Scholar 

  • Dogan S, Dogan M (2004) Determination of kinetic properties of polyphenol oxidase from Thymus (Thymus longicaulis subsp. chaubardii var. chaubardii). Food Chem 88:69–77

    CAS  Google Scholar 

  • Dominguez-Vargas JR, Navarro-Rodriguez JA, de Heredia JB, Cuerda-Correa EM (2009) Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions. J Hazard Mater 169:302–308

    CAS  Google Scholar 

  • Duangmal K, Apenten RKO (1999) A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanum tuberosum var. Romano). Food Chem 64:351–359

    CAS  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Google Scholar 

  • Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931

    Google Scholar 

  • Edwards W, Bownes R, Leukes WD, Jacobs EP, Sanderson R, Rose PD, Burton SG (1999) A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzyme Microb Technol 24:209–217

    CAS  Google Scholar 

  • El-Sayed WS, Ismaeil M, El-Beih F (2009) Isolation of 4-chlorophenol-degrading bacteria, Bacillus subtilis OS1 and Alcaligenes sp. OS2 from petroleum oil-contaminated soil and characterization of its catabolic pathway. Aus J Basic Appl Sci 3:776–783

    CAS  Google Scholar 

  • Ensuncho L, Alvarez-Cuenca M, Legge RL (2005) Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor. Bioprocess Biosyst Eng 27:185–191

    CAS  Google Scholar 

  • Erhan E, Keskinler B, Akay G, Algur OF (2002) Removal of phenol from water by membrane-immobilized enzymes: part I. Dead-end filtration. J Membrane Sci 206:361–373

    CAS  Google Scholar 

  • Escribano J, Cabanes J, Chazarra S, García-Carmona F (1997) Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine/dopamine pair. J Agric Food Chem 45:4209–4214

    CAS  Google Scholar 

  • Faust SD, Aly OM (1983) Chemistry of water treatment. Butterworth, Woburn, MA

    Google Scholar 

  • Fountoulakis MS, Dokianakis SN, Kornaros ME, Aggelis GG, Lyberatos G (2002) Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res 36:4735–4744

    CAS  Google Scholar 

  • Galliker P, Hommes G, Schlosser D, Corvini PF, Shahgaldian P (2010) Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. J Colloid Interface Sci 349:98–105

    CAS  Google Scholar 

  • Gawlik-Dziki U, Szymanowska U, Baraniak B (2007) Characterization of polyphenol oxidase from broccoli (Brassica oleracea var. botrytis italica) florets. Food Chem 105:1047–1053

    CAS  Google Scholar 

  • Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernandez-Alba AR (2003) Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50:71–78

    CAS  Google Scholar 

  • Giorno L, Drioli E (2000) Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol 18:339–349

    CAS  Google Scholar 

  • Goia A, Trapidoa M, Tuhkanenb T (2004) A study of toxicity, biodegradability, and some by-products of ozonised nitrophenols. Adv Environ Res 8:303–311

    Google Scholar 

  • Golan-Goldhirsh Avi, Whitaker JR (1984) Effect of ascorbic acid, sodium bisulfite, and thiol compounds on mushroom polyphenol oxidase. J Agric Food Chem 32:1003–1009

    CAS  Google Scholar 

  • Grady CPL Jr (1990) Biodegradation of toxic organics: status and potential. J Environ Eng 116:805–828

    CAS  Google Scholar 

  • Gurujeyalakshmi G, Oriel P (1989) Isolation of phenol-degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55:500–502

    CAS  Google Scholar 

  • Ha SR, Vinitnantharat S, Ozaki H (2000) Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols. Biotech Lett 22:1093–1096

    CAS  Google Scholar 

  • Heyl A, Jorissen J (2006) Electrochemical detoxification of waste water without additives using solid polymer electrolyte (SPE) technology. J Appl Electrochem 36:1281–1290

    CAS  Google Scholar 

  • Ibrahim MS, Ali HI, Taylor KE, Biswas N, Bewtra JK (2001) Enzyme-catalyzed removal of phenol from refinery wastewater: feasibility studies. Water Environ Res 73:165–172

    CAS  Google Scholar 

  • Ikehata K, Buchanan ID (2002) Screening of Coprinus species for the production of extracellular peroxidase and evaluation of the enzyme for the treatment of aqueous phenol. Environ Technol 23:1355–1367

    CAS  Google Scholar 

  • Jukanti AK, Bruckner PL, Fischer AM (2004) Evaluation of wheat polyphenol oxidase genes. Cereal Chem 81:481–485

    Google Scholar 

  • Justino C, Marques AG, Rodrigues D, Silva L, Duarte AC, Rocha-Santos T, Freitas AC (2011) Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: a comparative study. Biodegradation 22:267–274

    CAS  Google Scholar 

  • Kameda E, Langone MA, Coelho MA (2006) Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Environ Technol 27:1209–1215

    CAS  Google Scholar 

  • Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69:141–153

    CAS  Google Scholar 

  • Khan AA, Husain Q (2007a) Decolorization and removal of textile and non-textile dyes from polluted wastewater and dyeing effluent by using potato (Solanum tuberosum) soluble and immobilized polyphenol oxidase. Bioresour Technol 98:1012–1019

    CAS  Google Scholar 

  • Khan AA, Husain Q (2007b) Potential of plant polyphenol oxidases in the decolorization and removal of textile and non-textile dyes. J Environ Sci (China) 19:396–402

    Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    CAS  Google Scholar 

  • Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol 5:1084–1090

    CAS  Google Scholar 

  • Klibanov AM, Alberti BN, Morris ED, Felshin LM (1980) Enzymatic removal of toxic phenols and anilines from waste waters. J Appl Biochem 2:414–421

    CAS  Google Scholar 

  • Klibanov AM, Tu TM, Scott KP (1983) Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221:259–261

    CAS  Google Scholar 

  • Kouakou TH, Kouadio YJ, Kouame P, Waffo-Teguo P, Decendit A, Merillon JM (2009) Purification and biochemical characterization of polyphenol oxidases from embryogenic and nonembryogenic cotton (Gossypium hirsutum L.) cells. Appl Biochem Biotechnol 158:285–301

    CAS  Google Scholar 

  • Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    CAS  Google Scholar 

  • Lončar N, Božič N, Andelkovič I, Milovanovič A, Dojnov B, Vujčič M, Roglič G, Vujčič Z (2011) Removal of aqueous phenol and phenol derivatives by immobilized potato polyphenol oxidase. J Serb Chem Soc 76:513–522

    Google Scholar 

  • Loo YM, Lim PE, Seng CE (2010) Treatment of p-nitrophenol in an adsorbent-supplemented sequencing batch reactor. Environ Technol 31:479–487

    CAS  Google Scholar 

  • López-Molina D, Hiner ANP, Tudela J, García-Cánovas F, Rodríguez-López JN (2003) Enzymatic removal of phenols from aqueous solution by artichoke (Cynara scolymus L.) extracts. Enzyme Microb Technol 33:738–742

    Google Scholar 

  • Mannisto MK, Tiirola MA, Puhakka JA (2001) Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12:291–301

    CAS  Google Scholar 

  • Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents part I. Organic matter degradation by chemical and biological processes—an overview. Environ Int 31:289–295

    CAS  Google Scholar 

  • Mantzavinos D, Hellenbrand R, Livingston AG, Metcalfe IS (1996) Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, reaction pathways and catalyst leaching. Appl Catal B Environ 7:379–396

    CAS  Google Scholar 

  • Marin-Zamora ME, Rojas-Melgarejo F, Garcia-Canovas F, Garcia-Ruiz PA (2007) Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates. J Biotechnol 131:388–396

    CAS  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    CAS  Google Scholar 

  • Mukherjee S, Bandyopadhayay B, Basak B, Mandal N, Dey A, Mondal B (2012) An improved method of optimizing the extraction of polyphenol oxidase from potato (Solanum tuberosum L.) Peel. Not Sci Bio l4:98–107

    Google Scholar 

  • Ni Eidhin D, Degn P, O’beirne D (2010) Characterization of polyphenol oxidase from rooster potato (solanum tuberosum cv rooster). J Food Biochem 34:13–30

    Google Scholar 

  • Niladevi KN, Prema P (2008) Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J Microbiol Biotechnol 24:1215–1222

    Google Scholar 

  • Nishiyama T, Ogura K, Nakano H, Kaku T, Takahashi E, Ohkubo Y, Sekine K, Hiratsuka A, Kadota S, Watabe T (2002) Sulfation of environmental estrogens by cytosolic human sulfotransferases. Drug Metab Pharmacokinet 17:221–228

    CAS  Google Scholar 

  • Novotný C, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, Šašek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Google Scholar 

  • Okeke BC, Paterson A, Smith JE, Watson-Craik IA (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl Microbiol Biotechnol 48:563–569

    CAS  Google Scholar 

  • Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA, Medina MI (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Google Scholar 

  • Osborne RL, Raner GM, Hager LP, Dawson JH (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037

    CAS  Google Scholar 

  • Padilla L, Matus V, Zenteno P, Gonzalez B (2000) Degradation of 2,4,6-trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222. J Basic Microbiol 40:243–249

    CAS  Google Scholar 

  • Peralta-Zamora P, Pereira CM, Tiburtius ERL, Moraes SG, Rosa MA, Minussi RC, Durán N (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B Environ 42:131–144

    CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659

    CAS  Google Scholar 

  • Prabu PC, Udayasoorian C (2005) Biodecolorization of phenolic paper mill effluent by Ligninolytic Fungus Trametes versicolor. J Biol Sci 5:558–561

    CAS  Google Scholar 

  • Qiu L, Huang Z (2010) The treatment of chlorophenols with laccase immobilized on sol–gel-derived silica. World J Microbiol Biotechnol 26:775–781

    CAS  Google Scholar 

  • Rice RH, Cohen DE (1996) In: Klaassen CD, Amdur MO, Doull J (eds) Casarett and Doull’s toxicology. The basic science of poisons, 5th edn. McGraw-Hill, New York, NY

  • Ricquebourg SL, Robert-Da Silva CMF, Rouch CC, Cadet FR (1996) Theoretical support for a conformational change of polyphenol oxidase induced by metabisulfite. J Agric Food Chem 44:3457–3460

    CAS  Google Scholar 

  • Robles A, Lucas R, de Cienfuegos GA, Galvez A (2000) Phenol-oxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds. Enzyme Microb Technol 26:484–490

    CAS  Google Scholar 

  • Rocha-Santos T, Ferreira F, Silva L, Freitas AC, Pereira R, Diniz M, Castro L, Peres I, Duarte AC (2010) Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent. Environ Sci Pollut Res Int 17:866–874

    CAS  Google Scholar 

  • Saboury AA, Zolghadri S, Haghbeen K, Moosavi-Movahedi AA (2006) The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem 21:711–717

    CAS  Google Scholar 

  • Saito T, Kato K, Yokogawa Y, Nishida M, Yamashita N (2004) Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J Biosci Bioeng 98:64–66

    CAS  Google Scholar 

  • Saiyood S, Vangnai AS, Thiravetyan P, Inthorn D (2010) Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria. J Hazard Mater 178:777–785

    CAS  Google Scholar 

  • Sasaki M, Maki J, Oshiman K, Matsumura Y, Tsuchido T (2005) Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 16:449–459

    CAS  Google Scholar 

  • Schwien U, Schmidt E (1982) Improved degradation of monochlorophenols by a constructed strain. Appl Environ Microbiol 44:33–39

    CAS  Google Scholar 

  • Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    CAS  Google Scholar 

  • Shao J, Ge H, Yang Y (2007) Immobilization of polyphenol oxidase on chitosan-SiO2 gel for removal of aqueous phenol. Biotechnol Lett 29:901–905

    CAS  Google Scholar 

  • Shao J, Huang LL, Yang YM (2009) Immobilization of polyphenol oxidase on alginate–SiO2 hybrid gel: stability and preliminary applications in the removal of aqueous phenol. J Chem Technol Biotechnol 84:633–635

    CAS  Google Scholar 

  • Sharma HA, Barber JT, Ensley HE, Polito MA (1997) A comparison of the toxicity and metabolism of phenol and chlorinated phenols by Lemna gibba, with special reference to 2,4,5-trichlorophenol. Environ Toxicol Chem 16:346–350

    CAS  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    CAS  Google Scholar 

  • Shi J, Bian W, Yin X (2009) Organic contaminants removal by the technique of pulsed high-voltage discharge in water. J Hazard Mater 171:924–931

    CAS  Google Scholar 

  • Suzuki K, Hirai H, Murata H, Nishida T (2003) Removal of estrogenic activities of 17beta-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res 37:1972–1975

    CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  Google Scholar 

  • Tomsŏvský M, Homolka L (2004) Tyrosinase activity discovered in Trametes spp. World J Microbiol Biotechnol 20:529–530

    Google Scholar 

  • Torres E, Bustos-Jaimes I, Borgne SL (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B Environ 46:1–15

    CAS  Google Scholar 

  • Toscano G, Colarieti ML Jr, Greco G (2003) Oxidative polymerisation of phenols by a phenol oxidase from green olives. Enzyme Microb Technol 33:47–54

    CAS  Google Scholar 

  • Ushiba Y, Takahara Y, Ohta H (2003) Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048

    CAS  Google Scholar 

  • Witayakran S, Ragauskas AJ (2009) Synthetic applications of laccase in green chemistry. Adv Synth Catal 351:1187–1209

    CAS  Google Scholar 

  • Wu J, Taylor KE, Bewtra JK, Biswas N (1993) Optimization of the reactionconditions for enzymaticremoval of phenol from wastewater in the presence of polyethyleneglycol. Water Res 27:1701–1706

    CAS  Google Scholar 

  • Wu Y, Taylor KE, Biswas N, Bewtra JK (1997) Comparison of additives in the removal of phenolic compounds by peroxidase-catalyzed polymerization. Water Res 31:2699–2704

    CAS  Google Scholar 

  • Wu Y, Taylor KE, Biswas N, Bewtra JK (1998) A model for the protective effect of additives on the activity of horseradish peroxidase in the removal of phenol. Enzyme Microb Technol 22:315–322

    CAS  Google Scholar 

  • Xia Z, Yoshida T, Funaoka M (2003) Enzymatic degradation of highly phenolic lignin-based polymers (lignophenols). Eur Polymer J 39:909–914

    CAS  Google Scholar 

  • Xiangchun Q, Hanchang S, Yongming Z, Jianlong W, Yi Q (2003a) Biodegradation of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor. Process Biochem 38:1545–1551

    Google Scholar 

  • Xiangchun Q, Hanchang S, Yongming Z, Jianlong W, Yi Q (2003b) Biodegradation of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor. Process Biochem 38:1545–1551

    Google Scholar 

  • Yamada K, Inoue T, Akiba Y, Kashiwada A, Matsuda K, Hirata M (2006) Removal of p-alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads. Biosci Biotechnol Biochem 70:2467–2475

    CAS  Google Scholar 

  • Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q (2008) Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater 155:305–311

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Dey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Basak, B., Bhunia, B. et al. Potential use of polyphenol oxidases (PPO) in the bioremediation of phenolic contaminants containing industrial wastewater. Rev Environ Sci Biotechnol 12, 61–73 (2013). https://doi.org/10.1007/s11157-012-9302-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9302-y

Keywords

Navigation