Skip to main content
Log in

Photobioreactors for the production of microalgae

  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Microalgae are produced today for human and animal markets, as food-feed and source of active compounds. Microalgae can be also used in wastewater treatment and they has been proposed as biofuels source to reduce global warming problem. Whatever the final application of microalgae its production is based on the same principles as light availability, enough mass and heat transfer and adequate control of culture parameters. In this paper these principals are revised. Moreover, the production must be carried out at adequate scale using photobioreactors. Design of photobioreactor is determined by the final use of biomass and quality required. Different designs today used are revised, including last designs proposed, identifying his characteristics parameters and applications. In addition, the obligation of adequate control strategies is discussed. Finally, the bottlenecks for the scale-up of the different technologies and thus of microalgae production are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acién FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E (1997) A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng 55:701–714

    Article  Google Scholar 

  • Acién FG, Sevilla JMF, Perez JAS, Grima EM, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732

    Article  Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30(6):1344–1353

    Google Scholar 

  • Azov Y, Shelef G (1982) Operation of high-rate oxidation ponds: theory and experiments. Water Res 16:1153–1160

    Article  CAS  Google Scholar 

  • Babcock RW, Malda J, Radway JC (2002) Hydrodynamics and mass transfer in a tubular airlift photobioreactor. J Appl Phycol 14:169–184

    Article  CAS  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report. US DOE-NETL no: DOE/PC/93204–T5. Prepared for the Energy Technology Center, Pittsburgh, USA

    Book  Google Scholar 

  • Berenguel M, Rodríguez F, Acién FG, García JL (2004) Model predictive control of pH in tubular photobioreactors. J Process Control 14:377–387

    Article  CAS  Google Scholar 

  • Bosma R, Van Zessen E, Reith JH, Tramper J, Wijffels RH (2007) Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol Bioeng 97:1108–1120

    Article  CAS  Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12(1):37–47

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:217–232

    Article  Google Scholar 

  • Brindley C, Garcia-Malea MC, Acién FG, Fernández JM, García JL, Molina E (2004) Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng 87:723–733

    Article  Google Scholar 

  • Brindley C, Acién Fernández FG, Fernández-Sevilla JM (2011) Analysis of light regime in continuous light distributions in photobioreactors. Bioresour Technol 102:3138–3148

    Article  CAS  Google Scholar 

  • Camacho EF, Bordons C (1999) Model predictive control. Springer, Berlin

    Book  Google Scholar 

  • Camacho F, Acién FG, Sánchez JA, García F, Molina E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  Google Scholar 

  • Camacho FG, Grima EM, Mirón AS, Pascual VG, Chisti Y (2001) Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb Technol 29:602–610

    Article  CAS  Google Scholar 

  • Camacho F, Garcia F, Fernandez JM, Chisti Y, Molina E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  Google Scholar 

  • Carvalho AP, Malcata FX (2003) Kinetic modeling of the autotrophic growth of Pavlova lutheri: study of the combined influence of light and temperature. Biotechnol Prog 19:1128–1135

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  Google Scholar 

  • Chalmers JJ (1994) Cells and bubbles in sparged bioreactors. Cytotechnology 15:311–320

    Article  CAS  Google Scholar 

  • Chaumont D, Thepenier C, Gudin C, Junjas C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum, from laboratory to pilot plant (1981–1987). In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 199–208

    Google Scholar 

  • Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Chini-Zittelli G, Bondioli P (2012) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111

    Google Scholar 

  • Chini-Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Cornet JF, Dussap CG (2009) A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnol Prog 25(2):424–435

    Article  CAS  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665

    Article  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquues and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352

  • Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Algol Stud 76:129–147

    Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Fernández FGA, Camacho FG, Pérez JAS, Sevilla JMF, Grima EM (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:605–616

    Article  Google Scholar 

  • Fernández I, Peña J, Guzman JL, Berenguel M, Acién FG (2010) Modelling and control issues of pH in tubular photobioreactors. IFAC Proc Vol (IFAC-PapersOnline) 11:186–191

    Google Scholar 

  • Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    Article  Google Scholar 

  • García JL, Berenguel M, Rodríguez F, Fernández JM, Brindley C, Acién FG (2003) Minimization of carbon losses in pilot-scale outdoor photobioreactors by model-based predictive control. Biotechnol Bioeng 84:533–543

    Article  Google Scholar 

  • García-Malea MC, Gabriel Acién F, Río ED, Fernández JM, Cerón MC, Guerrero MG, Molina-Grima E (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657

    Article  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  • Grobbelaar JU (2012) Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24(3):315–318

    Google Scholar 

  • Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110

    CAS  Google Scholar 

  • Hall DO, Acién Fernández FG, Guerrero EC, Rao KK, Grima EM (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Article  CAS  Google Scholar 

  • Incropera FP, Thomas JF (1978) A model for solar radiation conversion to algae in a shallow pond. Sol Energy 20:157–165

    Article  Google Scholar 

  • James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol 17:895–906

    Article  CAS  Google Scholar 

  • Janssen M, De Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffels RH (2000) Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. J Appl Phycol 12:225–237

    Article  CAS  Google Scholar 

  • Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210

    Article  CAS  Google Scholar 

  • Jiménez C, Cossío BR, Niell FX (2003) Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture 221:331–345

    Article  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kawase Y, Moo-Young M (1990) Mathematical models for design of bioreactors: applications of Kolmogoroff’s theory of isotropic turbulence. Chem Eng J 43:B19–B41

    Article  CAS  Google Scholar 

  • Ketheesan B, Nirmalakhandan N (2012) Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour Technol 108:196–202

    Article  CAS  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1986) High algal production rates achieved in a shallow outdoor flumE. Biotechnol Bioeng 28:191–197

    Article  CAS  Google Scholar 

  • Lin Q, Lin J (2011) Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour Technol 102:1615–1621

    Google Scholar 

  • Little AD (1953) Pilot plant studies in the production of Chlorella. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institute of Washington, Washington, pp 253–273

    Google Scholar 

  • Marquez FJ, Sasaki K, Nishio N, Nagai S (1995) Inhibitory effect of oxygen accumulation on the growth of Spirulina platensis. Biotechnol Lett 17:225–228

    Article  CAS  Google Scholar 

  • Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16(3):215–225

    Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96:27–36

    Article  CAS  Google Scholar 

  • Molina Grima E (1999) Encyclopedia of bioprocess technology: fermentation. biocatalysis and bioseparations. Wiley, New York, pp 1753–1769

    Google Scholar 

  • Molina E, Garcia F, Sanchez JA, Fernandez JM, Acien FG, Contreras Gomez A (1994) A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol 61:167–173

    Article  Google Scholar 

  • Molina E, Fernández JM, Sánchez JA, García F (1996) A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 45:59–69

    Article  Google Scholar 

  • Molina E, Acién FG, García F, Camacho F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  • Moreno J, Vargas MA, Rodríguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20:191–197

    Article  CAS  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  Google Scholar 

  • Oswald WJ, Golueke CG (1968) Large-scale production of microalgae. In: Mateless RI, Tannenbaum SR (eds) Single cell protein. MIT Press, Cambridge, pp 271–305

    Google Scholar 

  • Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61(3):633–639

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Phillips JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Adv Biochem Eng Biotechnol 59:123

    Article  CAS  Google Scholar 

  • Pulz O, Gerbsch N, Bacholz R (1995) Light energy supply in plate-type and light diffusing optical fiber bioreactors. J Appl Phycol 7:145–149

    Google Scholar 

  • Putt R, Singh M, Chinnasamy S, Das KC (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol 102:3240–3245

    Article  CAS  Google Scholar 

  • Qiang H, Richmond A (1996) Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor. J Appl Phycol 8:139–145

    Article  Google Scholar 

  • Radmann EM, Reinehr CO, Costa JAV (2007) Optimization of the repeated batch cultivation of microalga Spirulina platensis in open raceway ponds. Aquaculture 265:118–126

    Article  Google Scholar 

  • Rebolloso Fuentes MM, García Sánchez JL, Fernández Sevilla JM, Acién Fernández FG, Sánchez Pérez JA, Molina Grima E (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288

    Article  CAS  Google Scholar 

  • Richmond A (2004) Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:33–37

    Article  Google Scholar 

  • Richmond A, Cheng-Wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol 85(3):259–269

    Article  CAS  Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2:195–206

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  Google Scholar 

  • Sandnes JM, Källqvist T, Wenner D, Gislerød HR (2005) Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J Appl Phycol 17:515–525

    Article  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Singh DP, Singh N, Verma K (1995) Photooxidative damage to the cyanobacterium Spirulina platensis mediated by singlet oxygen. Curr Microbiol 31:44–48

    Article  CAS  Google Scholar 

  • Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3(4):387–397

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Takache H et al (2010) Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol Prog 26(2):431–440

    CAS  Google Scholar 

  • Takache H, Pruvost J, Cornet J-F (2012) Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor. Biotechnol Prog 28(3):681–692

    Article  CAS  Google Scholar 

  • Terry KL (1986) Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol Bioeng 28:988–995

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F, Balloni F, Materassi W, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–64

    Article  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture biotechnology and applied phycology. Blackwell Publishing, Iowa, pp 179–214

    Google Scholar 

  • Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic microorganisms. World patent WO 2004/074423 A2 (to Universit`a degli Studi di Firenze, Italia)

  • Tredici MR, Carlozzi P, Zittelli GC, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159

    Article  Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  Google Scholar 

  • Vandanjon L, Rossignol N, Jaouen P, Robert JM, Quéméneur F (1999) Effects of shear on two microalgae species. Contribution of pumps and valves in tangential flow filtration systems. Biotechnol Bioeng 63:1–9

    Article  CAS  Google Scholar 

  • Vejrazka C et al (2011) Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light. Biotechnol Bioeng 108:2905–2913

    Article  CAS  Google Scholar 

  • Vejrazka C et al (2012) Photosynthetic efficiency of Chlamydomonas reinhardtii in attenuated, flashing light. Biotechnol Bioeng 109:2567–2574

    Article  CAS  Google Scholar 

  • Vonshak A (1997) Spirulina: growth, physiology and biochemistry. In: Vonhask A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 43–65

    Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant, Cell Environ 24:1113–1118

    Article  Google Scholar 

  • Watanabe Y, Delanoue J, Hall DO (1995) Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol Bioeng 47:261–269

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  Google Scholar 

  • Weissmann JC, Goebel RP (1987) Design and analysis of microalgal open pond systems for the purpose of producing fuels: a subcontract report. United States: SERI/STR-231-2840

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  Google Scholar 

  • Yoshimoto N, Sato T, Kondo Y (2005) Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J Appl Phycol 17:207–214

    Article  CAS  Google Scholar 

  • Zhang K, Miyachi S, Kurano N (2001) Photosynthetic performance of a cyanobacterium in a vertical flat-plate photobioreactor for outdoor microalgal production and fixation of CO2. Biotechnol Lett 23(1):21–26

    Google Scholar 

  • Zhu YH, Jiang JG (2008) Continuous cultivation of Dunaliella salina in photobioreactor for the production of b-carotene. Eur Food Res Technol 227:953–959

    Article  CAS  Google Scholar 

  • Zonneveld C (1998) Light-limited microalgal growth: a comparison of modelling approaches. Ecol Model 113:41–54

    Article  Google Scholar 

  • Zou N, Richmond A (1999) Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. J Biotechnol 70(1–3):351–356

    Google Scholar 

Download references

Acknowledgments

This research was supported by EnerBioAlgae (SOE2/P2/E374) SUDOE INTERREG IVB, National Plan Project DPI2011-27818-C02-01 of the Spanish Ministry of Science and Innovation; as well as by FEDER funds, PlanE supported by CDTI and CENITVIDA in collaboration with AlgaEnergy. Also acknowledgements to Fundación CAJAMAR, and Junta de Andalucía, Plan Andaluz de Investigación (CVI 131 &173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Acién Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acién Fernández, F.G., Fernández Sevilla, J.M. & Molina Grima, E. Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 12, 131–151 (2013). https://doi.org/10.1007/s11157-012-9307-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9307-6

Keywords

Navigation