Skip to main content

Advertisement

Log in

The cyanotoxin-microcystins: current overview

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The monocyclic heptapeptides microcystins (MCs), are a group of hepatotoxins, produced worldwide by some bloom-forming cyanobacterial species/strains both in marine and freshwater ecosystems. MCs are synthesized non-ribosomally by large multi-enzyme complexes consisting of different modules including polyketide synthases and non-ribosomal peptide synthetases, as well as several tailoring enzymes. More than 85 different variants of MCs have been reported to exist in nature. These are chemically stable, but undergo bio-degradation in natural water reservoirs. Direct or indirect intake of MCs through the food web is assumed to be a highly exposed route in risk assessment of cyanotoxins. MCs are the most commonly found cyanobacterial toxins that cause a major challenge for the production of safe drinking water and pose a serious threat to global public health as well as fundamental ecological processes due to their potential carcinogenicity. Here, we emphasize recent updates on different modes of action of their possible carcinogenicity. Besides the harmful effects on human and animals, MC producing cyanobacteria can also present a harmful effect on growth and development of agriculturally important plants. Overall, this review emphasizes the current understanding of MCs with their occurrence, geographical distribution, accumulation in the aquatic as well as terrestrial ecosystems, biosynthesis, climate-driven changes in their synthesis, stability and current aspects on its degradation, analysis, mode of action and their ecotoxicological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe T, Lawson T, Weyers DB, Codd GA (1996) Microcystin-LR inhibits photosynthesis of Phaseolus vulgaris primary leaves: implications for current spray irrigation practice. New Phytol 133:651–658

    CAS  Google Scholar 

  • Aboal M, Puig MA, Asencio AD (2005) Production of microcystins in calcareous Mediterranean streams: the Alharabe River, Segura River basin in south-east Spain. J Appl Phycol 17:231–243

    CAS  Google Scholar 

  • Aboal M, Puig MA (2009) Microcystin production in Rivularia colonies of calcareous streams from Mediterranean Spanish basins. Algol Stud 130:39–52

    CAS  Google Scholar 

  • Aboal M (2013) Benthic microcystin and climate change. In: Srivastava AK, Rai AN, Neilan BA (eds) Stress biology of cyanobacteria: molecular mechanisms to cellular responses. CRC Press, Boca Raton, pp 321–340

    Google Scholar 

  • Addico GND, Hardege JD, Komárek J, Degraft-Johnson KAA (2009) Cyanobacterial diversity and biomass in relation to nutrient regime of four freshwater reservoirs sourced for the production of drinking water in Ghana. Algol Stud 130:81–108

    Google Scholar 

  • Aguete EC, Gago-Martínez A, Leão JM, Rodríguez-Vázquez JA, Menàrd C, Lawrence JF (2003) HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction. Talanta 59:697–705

    CAS  Google Scholar 

  • Alamri SA (2010) Biodegradation of microcystin by a new Bacillus sp. isolated from a Saudi freshwater lake. Afr J Biotechnol 9:6552–6559

    CAS  Google Scholar 

  • Alonso-Andicoberry C, Garcia-Villada L, Lopez-Rodas V, Costas E (2002) Catastrophic mortality of flamingos in a Spanish national park caused by cyanobacteria. Vet Rec 151:706–707

    CAS  Google Scholar 

  • Al-Sultan EYA (2011) The isolation, the purification and the identification of hepatotoxin microcystin-LR from two cyanobacterial species and studying biological activity on some aquatic organisms. J Basrah Res 37:39–57

    Google Scholar 

  • Al-Tebrineh J, Gehringer MM, Akcaalan R, Neilan BA (2011) A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon 57:546–554

    CAS  Google Scholar 

  • Amado LL, Garcia ML, Ramos PB, Freitas RF, Zafalon B, Ferreira JLR, Yunesc JS, Monserrat JM (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ 407:2115–2123

    CAS  Google Scholar 

  • Anjos FMD, Bittencourt-Oliveira MDC, Zajac MP, Hiller S, Christian B, Erler K, Luckas B, Pinto E (2006) Detection of harmful cyanobacteria and their toxins by both PCR amplification and LC-MS during a bloom event. Toxicon 48:239–245

    Google Scholar 

  • Antoniou MG, de la Cruz AA, Dionysiou DD (2010) Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e transfer mechanisms. Appl Catal B: Environ 96:290–298

    CAS  Google Scholar 

  • Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282:21889–21900

    CAS  Google Scholar 

  • Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brasil. Toxicology 181:441–446

    Google Scholar 

  • Bajpai R, Sharma NK, Lawton LA, Edwards C, Rai AK (2009) Microcystin producing cyanobacterium Nostoc sp. BHU001 from a pond in India. Toxicon 53:587–590

    CAS  Google Scholar 

  • Ballot A, Krienitz L, Kotut K, Wiegand C, Pflugmacher S (2005) Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 4:139–150

    CAS  Google Scholar 

  • Bandala ER, Martínez D, Martínez E, Dionysiou DD (2004) Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes. Toxicon 43:829–832

    CAS  Google Scholar 

  • Barco M, Lawton LA, Rivera J, Caixach J (2005) Optimization of intracellular microcystin extraction for their subsequent analysis by high-performance liquid chromatography. J Chromatogr A 1074:23–30

    CAS  Google Scholar 

  • Bateman KP, Thibault P, Douglas DJ, White RL (1995) Mass-spectral analyses of microcystins from toxic cyanobacteria using online chromatographic and electrophoretic separations. J Chromatogr A 712:253–268

    CAS  Google Scholar 

  • Bell SG, Codd GA (1994) Cyanobacterial toxins and human health. Rev Med Microbiol 5:217–277

    Google Scholar 

  • Bibo L, Yan G, Bangding X, Jiantong L, Yongding L (2008) A laboratory study on risk assessment of microcystin-RR in cropland. J Environ Manage 86:566–574

    Google Scholar 

  • Bittencourt-Oliveira MDC (2003) Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae 2:51–60

    Google Scholar 

  • Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62:4086–4094

    CAS  Google Scholar 

  • Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL (2001) Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ Toxicol 16:523–534

    CAS  Google Scholar 

  • Briand JF, Jacquet S, Bernard C, Humbert JF (2003) Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34:361–377

    CAS  Google Scholar 

  • Brookes JD, Carey CC (2011) Resilience to blooms. Science 334:46–47

    CAS  Google Scholar 

  • Brzuzan P, Wozny M, Ciesielski S, Luczynski MK, Gora M, Kuzminski H, Dobosz S (2009) Microcystin-LR induced apoptosis and mRNA expression of p53 and cdkn1a in liver of whitefish (Coregonus lavaretus L.). Toxicon 54:170–183

    CAS  Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    CAS  Google Scholar 

  • Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287

    CAS  Google Scholar 

  • Carbis CR, Waldron DL, Mitchell GF, Anderson JW, McCauley I (1995) Recovery of hepatic function and latent mortalities in sheep exposed to the blue-green alga Microcystis aeruginosa. Vet Rec 137:12–15

    CAS  Google Scholar 

  • Chen J, Song L, Dai J, Gan N, Liu Z (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400

    CAS  Google Scholar 

  • Chen T, Wang Q, Cui J, Yang W, Shi Q, Hua Z, Ji J, Shen P (2005) Induction of apoptosis in mouse liver by microcystin-LR. A combined transcriptomic, proteomic, and simulation strategy. Mole Cell Proteom 4:958–974

    CAS  Google Scholar 

  • Chen T, Cui J, Liang Y, Xin X, Young DO, Chen C, Shen P (2006) Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-LR. Toxicology 220:71–80

    CAS  Google Scholar 

  • Chen J, Xie P, Li L, Xu J (2009a) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci 108:81–89

    CAS  Google Scholar 

  • Chen J, Zhang D, Xie P, Wang Q, Ma Z (2009b) Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic microcystis blooms. Sci Total Environ 407:3317–3322

    CAS  Google Scholar 

  • Chen J, Hu LB, Zhou W, Yan SH, Yang JD, Xue YF, Shi ZQ (2010a) Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu. China. Int J Mol Sci 11:896–911

    CAS  Google Scholar 

  • Chen X, Yang X, Yang L, Xiao B, Wu X, Wang J, Wan H (2010b) An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Res 44:1884–1892

    CAS  Google Scholar 

  • Chen J, Dai J, Zhang H, Wang C, Zhou G, Han Z, Liu Z (2010c) Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). Ecotoxicology 19:796–803

    CAS  Google Scholar 

  • Chen Y, Xu J, Li Y, Han X (2011a) Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reproduc Toxicol 31:551–557

    CAS  Google Scholar 

  • Chen JZ, Ye JY, Zhang HY, Jiang XJ, Zhang YX, Liu ZL (2011b) Freshwater toxic cyanobacteria induced DNA damage in apple (Malus pumila), rape (Brassica napus) and rice (Oryza sativa). J Hazard Mater 190:240–244

    CAS  Google Scholar 

  • Chen J, Han FX, Wang F, Zhang H, Shi Z (2012) Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol Environ Saf 76:193–199

    CAS  Google Scholar 

  • Cheng YS, Zhou Y, Irvin CM, Kirkpatrick B, Backer LC (2007) Characterization of aerosols containing microcystin. Mar Drugs 5:136–150

    CAS  Google Scholar 

  • Chernyak BV (1997) Redox regulation of the mitochondrial permeability transition pore. Biosci Rep 17:293–302

    CAS  Google Scholar 

  • Chia AM, Oniye SJ, Ladan Z, Lado Z, Pila AE, Inekwe VU, Mmerole JU (2009) A survey for the presence of microcystins in aquaculture ponds in Zaria, Northern-Nigeria: possible public health implication. Afr J Biotechnol 8:6282–6289

    CAS  Google Scholar 

  • Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572

    CAS  Google Scholar 

  • Christiansen G, Yoshida WY, Blom JF, Portmann C, Gademann K, Hemscheidt T, Kurmayer R (2008) Isolation and structure determination of two microcystins and sequence comparison of the McyABC adenylation domains in Planktothrix species. J Nat Prod 71:1881–1886

    CAS  Google Scholar 

  • Codd GA, Bell SG, Kaya K, Ward CJ, Beattie KA, Metcalf JS (1999a) Cyanobacterial toxins, exposure routes and human health. Eur J Phycol 34:405–415

    Google Scholar 

  • Codd GA, Metcalf JS, Beattie KA (1999b) Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185

    CAS  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    CAS  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720

    CAS  Google Scholar 

  • Dagnino D, Schripsem J (2005) 1H NMR quantification in very dilute toxin solutions: application to anatoxin-a analysis. Toxicon 46:236–240

    CAS  Google Scholar 

  • Dai G, Quan C, Zhang X, Liu J, Song L, Gan N (2012) Fast removal of cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-Fe(III) complex. Water Res 46:1482–1489

    CAS  Google Scholar 

  • Dai R, Liu H, Qu J, Ru J, Hou Y (2008) Cyanobacteria and their toxins in Guanting reservoir of Beijing, China. J Hazard Mater 153:470–477

    CAS  Google Scholar 

  • Damkova V, Paskova V, Bandouchova H, Hilscherova K, Sedlackova J, Novotny L, Peckova L, Vitula F, Pohanka M, Pikula J (2011) Testicular toxicity of cyanobacterial biomass in Japanese quails. Harmful Algae 10:612–618

    CAS  Google Scholar 

  • Davis WD, Berry DL, Boyer GL, Gobler JC (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    CAS  Google Scholar 

  • Dawson RM (1998) The toxicology of microcystins. Toxicon 36:953–962

    CAS  Google Scholar 

  • Ding WX, Shen HM, Ong CN (2000a) Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology 32:547–555

    CAS  Google Scholar 

  • Ding WX, Shen HM, Ong CN (2000b) Microcystic cyanobacteria extract induces cytoskeletal disruption and intracellular glutathione alteration in hepatocytes. Environ Health Perspect 108:605–609

    CAS  Google Scholar 

  • Ding WX, Shen HM, Ong CN (2002) Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochem Biophys Res Commun 291:321–331

    CAS  Google Scholar 

  • Dittmann E, Neilan BA, Erhard M, von Döhren H, Börner T (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787

    CAS  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17

    CAS  Google Scholar 

  • Dörr FA, Pinto E, Soares RM, Feliciano de Oliveira e Azevedo SM (2010) Microcystins in South American aquatic ecosystems: occurrence, toxicity and toxicological assays. Toxicon 56:1247–1256

    Google Scholar 

  • Douglas P, Moorhead GB, Ye R, Lees-Miller SP (2001) Protein phosphatases regulate DNA-dependent protein kinase activity. J Biol Chem 276:18992–18998

    CAS  Google Scholar 

  • Edwards C, Lawton LA, Beattie KA, Codd GA, Pleasance S, Dear GJ (1993) Analysis of microcystins from cyanobacteria by liquid chromatography with mass-spectrometry using atmospheric-pressure ionization. Rapid Commun Mass Spectrom 7:714–721

    CAS  Google Scholar 

  • Edwards C, Lawton LA (2009) Bioremediation of cyanotoxins. Adv Appl Microbiol 67:109–129

    CAS  Google Scholar 

  • El Herry S, Fathalli A, Jenhani-Ben Rejeb A, Bouaïcha N (2008) Seasonal occurrence and toxicity of Microcystis spp. and Oscillatoria tenuis in the Lebna Dam. Tunisia. Water Res 42:1263–1273

    Google Scholar 

  • Eleuterio L, Batista JR (2010) Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a fresh water lake. Toxicon 55:1434–1442

    CAS  Google Scholar 

  • Elliott JA (2010) The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biol 16:864–876

    Google Scholar 

  • El-Shehawy R, Gorokhova E, Fernández-Piñas F, del Campo FF (2012) Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments? Water Res 46:1420–1429

    CAS  Google Scholar 

  • Eriksson JE, Grönberg L, Nygĺrd S, Slotte JP, Meriluoto JAO (1990) Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim Biophys Acta 1025:60–66

    CAS  Google Scholar 

  • Falconer IR, Yeung DS (1992) Cytoskeletal changes in hepatocytes induced by Microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chem Biol Interact 81:181–196

    CAS  Google Scholar 

  • Feng G, Abdalla M, Li Y, Bai Y (2011) NF-kB mediates the induction of Fas receptor and Fas ligand by microcystin-LR in HepG2 cells. Mol Cell Biochem 352:209–219

    CAS  Google Scholar 

  • Fernandes S, Welker M, Vasconcelos VM (2009) Changes in the GST activity of the mussel Mytilus galloprovincialis during exposure and depuration of microcystins. J Exp Zool 311A:226–230

    CAS  Google Scholar 

  • Ferrão-Filho AD, Soares MCS, Magalhaes VD, Azevedo SMFO (2009) Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. Ecotoxicol Environ Saf 72:479–489

    Google Scholar 

  • Ferrão-Filho ADS, Kozlowsky-Suzuki B (2011) Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 9:2729–2772

    Google Scholar 

  • Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Laakso K, Wang H, Sivonen K (2007) Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol 7:183

    Google Scholar 

  • Fewer DP, Tooming-Klunderud A, Jokela J, Wahlsten M, Rouhiainen L, Kristensen T, Rohrlack T, Jakobsen KS, Sivonen K (2008) Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology 154:1007–1014

    CAS  Google Scholar 

  • Fiore MF, Genuário DB, Pamplona da Silva CS, Shishido TK, Moraes LA, Cantúsio Neto R, Silva-Stenico ME (2009) Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella. Toxicon 53:754–761

    CAS  Google Scholar 

  • Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203:257–263

    CAS  Google Scholar 

  • Fladmark KE, Brustugun OT, Hovland R, Boe R, Gjertsen BT, Zhivotovsky B, Doskeland SO (1999) Ultra rapid caspase 3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death Diff 6:1099–1108

    CAS  Google Scholar 

  • Fladmark KE, Brustugun OT, Mellgren G, Krakstad C, Boe R, Vintermyr OK, Schulman H, Doskeland SO (2002) Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis. J Biol Chem 277:2804–2811

    CAS  Google Scholar 

  • Francis G (1878) Poisonous Australian lake. Nature 18:11–12

    Google Scholar 

  • Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38:97–125

    CAS  Google Scholar 

  • Furukawa K, Noda N, Tsuneda S, Saito T, Itayama T, Inamori Y (2006) Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. J Biosci Bioeng 102:90–96

    CAS  Google Scholar 

  • Gácsi M, Antal O, Vasas G, Máthé C, Borbély G, Saker ML, Győri J, Farkas A, Vehovszky A, Bánfalvi G (2009) Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol In Vitro 23:710–718

    Google Scholar 

  • Gehringer MM, Kewada V, Coates N, Downing TG (2003) The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon 41:871–876

    CAS  Google Scholar 

  • Gerbersdorf SU (2006) An advanced technique for immuno-labelling of microcystins in cryosectioned cells of Microcystis aeruginosa PCC 7806 (cyanobacteria): implementations of an experiment with varying light scenarios and culture densities. Toxicon 47:218–228

    CAS  Google Scholar 

  • Ghosh S, Khan SA, Wickstrom M, Beasley V (1995) Effects of microcystin-LR on actin and the actin-associated proteins a-actinin and talin in hepatocytes. Nat Toxins 3:405–414

    CAS  Google Scholar 

  • Gouvêa SP, Boyer GL, Twiss MR (2008) Influence of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). Harmful Algae 7:194–205

    Google Scholar 

  • Gremberghe IV, Van der Gucht K, Vanormelingen P, Asmelash T, Dejenie T, D’hondt S, Declerck S, De Meester L, Vyverman W (2011) Genetic diversity of Microcystis blooms (Cyanobacteria) in recently constructed reservoirs in Tigray (Northern Ethiopia) assessed by rDNA ITS. Aquat Ecol 45:289–306

    Google Scholar 

  • Gurbuz F, Metcalf JS, Karahan AG, Codd GA (2009) Analysis of dissolved microcystins in surface water samples from Kovada Lake, Turkey. Sci Total Environ 407:4038–4046

    CAS  Google Scholar 

  • Guzman RE, Solter PF (1999) Hepatic oxidative stress following prolonged sublethal microcystin LR exposure. Toxicol Pathol 27:582–588

    CAS  Google Scholar 

  • Hamvas MM, Mathe C, Molnar E, Vasa G, Grigorsky I, Borbely G (2003) Microcystin-LR alters the growth, anthanocyanin content and single-stranded DNase enzyme activities in Sinapsis alba L. seedlings. Aquat Toxicol 61:1–9

    Google Scholar 

  • Hamvas MM, Máthé C, Vasas G, Jámbrik K, Papp M, Beyer D, Mészáros I, Borbély G (2010) Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. Acta Biol Hung 61:35–48

    Google Scholar 

  • Handeland K, Østensvik Ø (2010) Microcystin poisoning in roe deer (Capreolus capreolus). Toxicon 56:1076–1078

    CAS  Google Scholar 

  • Hao L, Xie P, Li H, Li G, Xiong Q, Wang Q, Qiu T, Liu Y (2010) Transcriptional alteration of cytoskeletal genes induced by microcystins in three organs of rats. Toxicon 55:1378–1386

    CAS  Google Scholar 

  • Harada KI, Ogawa K, Matsuura K, Murata H, Suzuki M, Watanabe MF, Itezono Y, Nakayama N (1990) Structural determination of geometrical-isomers of microcystins LR and RR from cyanobacteria by 2-Dimensional NMR spectroscopic techniques. Chem Res Toxicol 3:473–481

    CAS  Google Scholar 

  • Harada KI, Murata H, Qiang Z, Suzuki M, Kondo F (1996a) Mass spectrometric screening method for microcystins in cyanobacteria. Torrcon 34:701–710

    CAS  Google Scholar 

  • Harada KI, Tsuji K, Watanabe MF, Kondo F (1996b) Stability of microcystins from cyanobacteria-effect of pH and temperature. Phycologia 35:83–88

    Google Scholar 

  • Harada KI, Imanishi S, Kato H, Masayoshi M, Ito E, Tsuji K (2004) Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44:107–109

    CAS  Google Scholar 

  • He X, Pelaez M, Westrick JA, O’Shea KE, Hiskia A, Triantis T, Kaloudis T, Stefan MI, de la Cruz AA, Dionysiou DD (2012) Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res 46:1501–1510

    CAS  Google Scholar 

  • Heresztyn T, Nicholson BC (2001) Determination of cyanobacterial hepatotoxins directly in water using a protein phosphatase inhibition assay. Water Res 35:3049–3056

    CAS  Google Scholar 

  • Hernández JM, López-Rodas V, Costas E (2009) Microcystins from tap water could be a risk factor for liver and colorectal cancer: a risk intensified by global change. Med Hypotheses 72:539–540

    Google Scholar 

  • Hicks LM, Moffitt MC, Beer LL, Moore BS, Kelleher NL (2006) Structural characterization of in vitro and in vivo intermediates on the loading module of microcystin synthetase. ACS Chem Biol 1:93–102

    CAS  Google Scholar 

  • Hilborn ED, Carmichael WW, Yuan M, Azevedo SMFO (2005) A simple colorimetric method to detect biological evidence of human exposure to microcystins. Toxicon 46:218–221

    CAS  Google Scholar 

  • Hilborn ED, Carmichael WW, Soares RM, Yuan M, Servaites JC, Barton HA, Azevedo SMFO (2007) Serologic evaluation of human microcystin exposure. Inc Environ Toxicol 22:459–463

    CAS  Google Scholar 

  • Hitzfeld BC, Lampert CS, Spaeth N, Mountfort D, Kaspar H, Dietrich DR (2000) Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 38:1731–1748

    CAS  Google Scholar 

  • Ho L, Meyn T, Keegan A, Hoefel D, Brookes J, Saint CP, Newcombe G (2006) Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Res 40:768–774

    CAS  Google Scholar 

  • Ho L, Hoefel D, Saint CP, Newcombe G (2007) Isolation and identification of a novel microcystin degrading bacterium from a biological sand filter. Water Res 41:4685–4695

    CAS  Google Scholar 

  • Ho L, Hoefel D, Palazot S, Sawade E, Newcombe G, Saint CP, Brookes JD (2010) Investigations into the biodegradation of microcystin-LR in wastewaters. J Hazard Mater 180:628–633

    CAS  Google Scholar 

  • Hodoki Y, Ohbayashi K, Kobayashi Y, Okuda N, Nakano S (2012) Detection and identification of potentially toxic cyanobacteria: ubiquitous distribution of Microcystis aeruginosa and Cuspidothrix issatschenkoi in Japanese lakes. Harmful Algae 16:49–57

    CAS  Google Scholar 

  • Hoefel D, Adriansen CMM, Bouyssou MAC, Saint CP, Newcombe G, Ho L (2009) Development of an mlrA gene-directed TaqMan PCR assay for quantitative assessment of microcystin-degrading bacteria within water treatment plant sand filter biofilms. Appl Environ Microbiol 75:5167–5169

    CAS  Google Scholar 

  • Hoeger S, Dietrich D, Hitzfeld B (2002) Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment. Environ Health Perspect 110:1127–1132

    CAS  Google Scholar 

  • Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M, Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatises. J Biol Chem 265:19401–19404

    CAS  Google Scholar 

  • Honkanen RE, Codispoti BA, Tse K, Boynton AL (1994) Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases. Toxicon 32:339–350

    CAS  Google Scholar 

  • Hu LB, Yang JD, Zhou W, Yin YF, Chen J, Shi ZQ (2009) Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria. New Biotechnol 26:205–211

    CAS  Google Scholar 

  • Hu Z, Chen H, Xue J, Zhang X, Shi X, Zou H (2010) The expression of Bcl-2 and Bax produced by sub-chronic intoxication with the cyanotoxin microcystin-LR. Chinese-German J Clin Oncol 9:68–72

    CAS  Google Scholar 

  • Hu L, Zhang F, Liu C, Wang M (2012) Biodegradation of microcystins by Bacillus sp. strain EMB. Energy Procedia 16:2054–2059

    CAS  Google Scholar 

  • Huang P, Zheng YF, Xu LH (2008a) Oral administration of cyanobacterial bloom extract induced the altered expression of the PP2A, Bax, and Bcl-2 in mice. Environ Toxicol 23:688–693

    CAS  Google Scholar 

  • Huang W, Xin W, Li D, Liu Y (2008b) Microcystin-RR induced apoptosis in tobacco BY-2 suspension cells is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Toxicol In Vitro 22:328–337

    CAS  Google Scholar 

  • Hush JM, Overall RL (1996) Cortical microtubule reorientation in higher plants: dynamics and regulation. J Microsc 181:129–139

    Google Scholar 

  • Ibelings BW, Chorus I (2007) Accumulation of cyanobacterial toxins in freshwater ‘‘seafood’’ and its consequences for public health: a review. Environ Pollut 150:177–192

    CAS  Google Scholar 

  • Imanishi S, Kato H, Mizuno M, Tsuji K, Harada K (2005) Bacterial degradation of microcystins and nodularin. Chem Res Toxicol 18:591–598

    CAS  Google Scholar 

  • Indabawa II (2010) Detection and quantification of microscystin by protein phosphate inhibition assay from Microcystis aeruginosa isolated from Burrow Pits in Kano, Nigeria. Inter J Biomed Health Sci 6:19–24

    Google Scholar 

  • Ishii H, Nishijima M, Abe T (2004) Characterization of degradation process of cyanobacterial hepatotoxins by a Gram-negative aerobic bacterium. Water Res 38:2667–2676

    CAS  Google Scholar 

  • Izaguirre G, Jungblut AD, Neilan BA (2007) Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Res 41:492–498

    CAS  Google Scholar 

  • Jámbrik K, Máthé C, Vasas G, Beyer D, Molnár E, Borbély G, M-Hamvas M (2011) Microcystin-LR induces chromatin alterations and modulates neutral single-strand-preferring nuclease activity in Phragmites australis. J Plant Physiol 168:678–686

    Google Scholar 

  • Järvenpää S, Lundberg-Niinistö C, Spoof L, Sjövall O, Tyystjärvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon 49:865–874

    Google Scholar 

  • Jasionek G, Zhdanov A, Davenport J, Bláha L, Papkovsky DB (2010) Mitochondrial toxicity of microcystin-LR on cultured cells: application to the analysis of contaminated water samples. Environ Sci Technol 44:2535–2541

    CAS  Google Scholar 

  • Ji Y, Lu G, Chen G, Huang B, Zhang X, Shen K, Wu S (2011) Microcystin-LR induces apoptosis via NF-κB/iNOS Pathway in INS-1 Cells. Int J Mol Sci 12:4722–4734

    CAS  Google Scholar 

  • Jiang Y, Shao J, Wu X, Xu Y, Li R (2011) Active and silent members in the mlr gene cluster of a microcystin degrading bacterium isolated from Lake Taihu, China. FEMS Microbiol Lett 322:108–114

    CAS  Google Scholar 

  • Jianwu S, Miao H, Shaoqing Y, Hanchang S, Yi Q (2007) Microcystin-LR detection based on indirect competitive enzyme-linked immunosorbent assay. Frontiers Environ Sci Eng China 1:329–333

    Google Scholar 

  • Jones GJ, Falconer IF, Wilkins RM (1995) Persistence of cyclic peptide toxins in dried cyanobacterial crusts from Lake Mokoan, Australia. Environ Toxicol Water Qual 10:19–24

    CAS  Google Scholar 

  • Joung SH, Oh HM, Ko SR, Ahn CY (2011) Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10:188–193

    Google Scholar 

  • Juhel G, O’Halloran J, Culloty SC, O’Riordan RM, Davenport J, O’Brien NM, Kevin F, James KF, Furey A, Allis O (2007) In vivo exposure to microcystins induces DNA damage in the haemocytes of the Zebra Mussel, Dreissena polymorpha, as measured with the comet assay. Environ Mol Mutagen 48:22–29

    CAS  Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2012) Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc Natl Acad Sci USA 109:5886–5891

    CAS  Google Scholar 

  • Kaebernick M, Neilan BA, Börner T, Dittmann E (2000) Light and the transcriptional response of the microcystin gene cluster. Appl Environ Microbiol 66:3387–3392

    CAS  Google Scholar 

  • Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyano-toxin production. FEMS Microbiol Ecol 35:1–9

    CAS  Google Scholar 

  • Kanoshina I, Lips U, Leppänen JM (2003) The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2:29–41

    Google Scholar 

  • Kato H, Imanishi SY, Tsuji K, Harada KI (2007) Microbial degradation of cyanobacterial cyclic peptides. Water Res 41:1754–1762

    CAS  Google Scholar 

  • Kaya K, Sano T (1998) A photodetoxification mechanism of the cyanobacterial hepatotoxin microcystin-LR by ultraviolet irradiation. Chem Res Toxicol 11:159–163

    CAS  Google Scholar 

  • Kaya K, Sano T (1999) Total microcystin determination using erythro-2-methyl-3-(methyl-d3)-4-phenylbutyric acid (MMPB-d3) as the internal standard. Anal Chim Acta 386:107–112

    CAS  Google Scholar 

  • Khalloufi FE, Oufdou K, Lahrouni M, Ghazali IE, Saqrane S, Vasconcelos V, Oudra B (2011) Allelopatic effects of cyanobacteria extracts containing microcystins on Medicago sativa-Rhizobia symbiosis. Ecotoxicol Environ Saf 74:431–438

    Google Scholar 

  • Kim HR, Kim CK, Ahn TS, Yoo SA, Lee DH (2005) Effects of temperature and light on microcystin synthetase gene transcription in Microcystis aeruginosa. Key Eng Mate 277–279:606–611

    Google Scholar 

  • Klemer AR, Cullen JJ, Mageau MT, Hanson KM, Sundell RA (1996) Cyanobacterial buoyancy regulation: the paradoxical roles of carbon. J Phycol 32:47–53

    CAS  Google Scholar 

  • Komatsu M, Furukawa M, Ikeda R, Takumi S, Nong QQ, Aoyama K, Akiyama S, Keppler D, Takeuchi T (2007) Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR-induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicol Sci 97:407–416

    CAS  Google Scholar 

  • Kong M, Fox CJ, Mu J, Solt L, Xu A, Cinalli RM, Birnbaum MJ, Lindsten T, Thompson CB (2004) The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science 306:695–698

    CAS  Google Scholar 

  • Kotut K, Ballot A, Krienitz L (2006) Toxic cyanobacteria and their toxins in standing waters of Kenya: implications for water resource use. J Water Health 4:233–245

    CAS  Google Scholar 

  • Kotut K, Ballot A, Wiegand C, Krienitz L (2010) Toxic cyanobacteria at Nakuru sewage oxidation ponds-A potential threat to wildlife. Limnologica 40:47–53

    CAS  Google Scholar 

  • Krienitz L, Ballot A, Wiegand C, Kotut K, Codd GA, Pflugmacher S (2002) Cyanotoxin-producing bloom of Anabaena flos-aquae, Anabaena discoidea and Microcystis aeruginosa (cyanobacteria) in Nyanza Gulf of Lake Victoria, Kenya. J Appl Bot 76:179–183

    Google Scholar 

  • Krienitz L, Ballot A, Kotut K, Wiegand C, Pütz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43:141–148

    CAS  Google Scholar 

  • Kujbida P, Hatanaka E, Campa A, Colepicolo P, Pinto E (2006) Effects of microcystins on human polymorphonuclear leukocytes. Biochem Biophys Res Commun 341:273–277

    CAS  Google Scholar 

  • Kujbida P, Hatanaka E, Campa A, Curi R, Farsky SHP, Pinto E (2008) Analysis of chemokines and reactive oxygen species formation by rat and human neutrophils induced by microcystin-LA, -YR and -LR. Toxicon 51:1274–1280

    CAS  Google Scholar 

  • Kujbida P, Hatanaka E, Vinolo MA, Waismam K, Cavalcanti DM, Curi R, Farsky SH, Pinto E (2009) Microcystins -LA, -YR, and -LR action on neutrophil migration. Biochem Biophys Res Commun 382:9–14

    CAS  Google Scholar 

  • Kuniyoshi TM, Gonzalez A, Lopez-Gomollon S, Valladares A, Bes MT, Fillat MF, Peleato ML (2011) 2-oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Lett 585:3921–3926

    CAS  Google Scholar 

  • Kuniyoshi TM, Sevilla E, Bes MT, Fillat MF, Peleato ML (2013) Phosphate deficiency (N/P 40:1) induces mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Plant Physiol Biochem 65:120–124

    CAS  Google Scholar 

  • Kurki-Helasmo K, Meriluoto J (1998) Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapsis alba L.) seedlings. Toxicon 36:1921–1926

    CAS  Google Scholar 

  • Lahrouni M, Oufdou K, Faghire M, Peix A, Khalloufi FE, Vasconcelos V, Oudra B (2012) Cyanobacterial extracts containing microcystins affect the growth, nodulation process and nitrogen uptake of faba bean (Vicia faba L., Fabaceae). Ecotoxicology 21:681–687

    CAS  Google Scholar 

  • Lankoff A, Krzowski L, Glab J, Banasik A, Lisowska H, Kuszewski T, Gozdz S, Wojcik A (2004) DNA damage and repair in human peripheral blood lymphocytes following treatment with microcystin-LR. Mut Res 559:131–142

    CAS  Google Scholar 

  • Lankoff A, Bialczyk J, Dziga D, Carmichael WW, Gradzka I, Lisowska H, Kuszewski T, Gozdz S, Piorun I, Wojcik A (2006a) The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor. Mutagenesis 21:83–90

    CAS  Google Scholar 

  • Lankoff A, Bialczyk J, Dziga D, Carmichael WW, Lisowska H, Wojcik A (2006b) Inhibition of nucleotide excision repair (NER) by microcystin-LR in CHO-K1 cells. Toxicon 48:957–965

    CAS  Google Scholar 

  • Lawton LA, Edwards C, Codd GA (1994) Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525–1530

    CAS  Google Scholar 

  • Lawton LA, Robertson PKJ, Cornish BJPA, Jaspars M (1999) Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation. Environ Sci Technol 33:771–775

    CAS  Google Scholar 

  • Lawton LA, Welgamage A, Manage PM, Edwards C (2011) Novel bacterial strains for the removal of microcystins from drinking water. Water Sci Technol 63:1137–1142

    CAS  Google Scholar 

  • Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009a) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282

    Google Scholar 

  • Leão PN, Vasconcelos MTSD, Vasconcelos VM (2009b) Allelopathic activity of cyanobacteria on green microalgae at low cell densities. Eur J Phycol 44:347–355

    Google Scholar 

  • Leão PN, Periera AR, Liu WT, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconcelos VM, Gerwick WH (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci USA 107:11183–11188

    Google Scholar 

  • Lemes GAF, Kersanach R, Pinto LS, Dellagostin OA, Yunes JS, Matthiensen A (2008) Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicol Environ Saf 69:358–365

    CAS  Google Scholar 

  • Li H, Xie P, Li G, Hao L, Xiong Q (2009a) In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon 53:169–175

    CAS  Google Scholar 

  • Li J, Shimizu K, Sakharkar MK, Utsumi M, Zhang Z, Sugiura N (2011a) Comparative study for the effects of variable nutrient conditions on the biodegradation of microcystin-LR and concurrent dynamics in microcystin-degrading gene abundance. Biores Technol 102:9509–9517

    CAS  Google Scholar 

  • Li T, Huang P, Liang J, Fu W, Guo Z, Xu L (2011b) Microcystin-LR (MCLR) induces a compensation of PP2A activity mediated by α4 protein in HEK293 cells. Int J Biol Sci 7:740–752

    CAS  Google Scholar 

  • Li XY, Wang SH, Wang CY, Bai X, Ma JG (2012) Exposure to crude microcystins via intraperitoneal injection, but not oral gavage, causes hepatotoxicity in ducks. Afr J Biotechnol 1:10894–10898

    Google Scholar 

  • Li Y, Sheng J, Sha J, Han X (2008) The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reprod Toxicol 26:239–245

    CAS  Google Scholar 

  • Li Y, Sun B, Wu H, Nie P (2009b) Effects of pure microcystin-LR on the transcription of immune related genes and heat shock proteins in larval stage of zebrafish (Danio rerio). Aquaculture 289:154–160

    CAS  Google Scholar 

  • Li Z, Yu J, Yang M, Zhang J, Burch MD, Han W (2010) Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9:481–488

    CAS  Google Scholar 

  • Liu X, Chen Z, Zhou N, Shen J, Ye M (2010a) Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone. J Environ Sci 22:1897–1902

    CAS  Google Scholar 

  • Liu Y, Xie P, Qiu T, Li HY, Li GY, Hao L, Xiong Q (2010b) Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testis. Environ Toxicol 25:9–17

    Google Scholar 

  • Liu Y, Tan W, Wu X, Wu Z, Yu G, Li R (2011) First report of microcystin production in Microcystis smithii Komárek and Anagnostidis (cyanobacteria) from a water bloom in Eastern China. J Environ Sci 23:102–107

    CAS  Google Scholar 

  • Lopez-Rodas V, Maneiro E, Lanzarot MP, Perdigones N, Costas E (2008) Mass wildlife mortality due to cyanobacteria in the Doñana National Park, Spain. Vet Rec 162:317–318

    CAS  Google Scholar 

  • Lukac M, Aegerter R (1993) Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon 31:293–305

    CAS  Google Scholar 

  • Lun Z, Hai Y, Kun C (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15:166–171

    Google Scholar 

  • Macias-Silva M, Garcia-Sainz JA (1994) Inhibition of hormone-stimulated inositol phosphate production and disruption of cytoskeletal structure. Effects of okadaic acid, microcystin, chlorpromazine, W7 and nystatin. Toxicon 32:105–112

    CAS  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    CAS  Google Scholar 

  • Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86

    CAS  Google Scholar 

  • Malécot M, Mezhoud K, Marie A, Praseuth D, Puiseux-Dao S, Edery M (2009) Proteomic study of the effects of microcystin-LR on organelle and membrane proteins in medaka fish liver. Aquat Toxicol 94:153–161

    Google Scholar 

  • Manage PM, Pathmalal M, Edwards C, Singh BK, Lawton LA (2009) Isolation and identification of novel microcystin-degrading bacteria. Appl Environ Microbiol 75:6924–6928

    CAS  Google Scholar 

  • Marco S, Aboal M, Chaves E, Mulero I, García-Ayala A (2012) Immunolocalisation of microcystins in colonies of the cyanobacterium Rivularia in calcareous streams. Mar Freshw Res 63:160–165

    CAS  Google Scholar 

  • Martins ND, Colvara WA, Rantin FT, Kalinin AL (2011) Microcystin-LR: how it affects the cardio-respiratory responses to hypoxia in Nile tilapia, Oreochromis niloticus. Chemosphere 84:154–159

    CAS  Google Scholar 

  • Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89

    CAS  Google Scholar 

  • Masango MG, Myburgh JG, Labuschagne L, Govender D, Bengis RG, Naicker D (2010) Assessment of Microcystis bloom toxicity associated with wildlife mortality in the Kruger national park. South Afr J Wildl Dis 46:95–102

    Google Scholar 

  • Máthé C, Beyer D, Erdődi F, Serfőző Z, Székvölgyi L, Vasas G, M-Hamvas M, Jámbrik K, Gonda S, Kiss A, Szigeti ZM, Surányi G (2009) Microcystin-LR induces abnormal root development by altering its microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets. Aquat Toxicol 92:122–130

    Google Scholar 

  • Matsunaga H, Harada KI, Senma M, Ito Y, Yasuda N, Ushida S, Kimura Y (1999) Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: sudden appearance of toxic cyanobacteria. Nat Toxins 7:81–84

    CAS  Google Scholar 

  • McDermott CM, Nho CW, Howard W, Holton B (1998) The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon 36:1981–1996

    CAS  Google Scholar 

  • McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420

    CAS  Google Scholar 

  • Meister A (1995) Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta 1271:35–42

    Google Scholar 

  • Mekebri A, Blondina GJ, Crane DB (2009) Method validation of microcystins in water and tissue by enhanced liquid chromatography tandem mass spectrometry. J Chromatogr A 1216:3147–3155

    CAS  Google Scholar 

  • Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793:27–32

    CAS  Google Scholar 

  • Merwe DVD, Sebbag L, Nietfeld JC, Aubel MT, Foss A, Carney E (2012) Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. J Vet Diagn Invest 24:679–687

    Google Scholar 

  • Metcalf JS, Bell SG, Codd GA (2001) Colorimetric immune-protein phosphatase inhibition assay for specific detection of microcystins and nodularins of cyanobacteria. Appl Environ Microbiol 67:904–909

    CAS  Google Scholar 

  • Metcalf JS, Richer R, Cox PA, Codd GA (2012a) Cyanotoxins in desert environments may present a risk to human health. Sci Total Environ 421–422:118–123

    Google Scholar 

  • Metcalf JS, Beattie KA, Purdie EL, Bryant JA, Irvine LM, Codd GA (2012b) Analysis of microcystins and microcystin genes in 60–170-year-old dried herbarium specimens of cyanobacteria. Harmful Algae 15:47–52

    CAS  Google Scholar 

  • Mez K, Beattie KA, Codd GA, Hanselmann K, Hauser B, Naegeli H, Preisig HR (1997) Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol 32:111–117

    Google Scholar 

  • Miao HF, Qin F, Tao GJ, Tao WY, Ruan WQ (2010) Detoxification and degradation of microcystin-LR and -RR by ozonation. Chemosphere 79:355–361

    CAS  Google Scholar 

  • Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS (2003) Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785

    CAS  Google Scholar 

  • Mikhailov A, Harmala-Brasken AS, Hellman J, Meriluoto J, Eriksson JE (2003) Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem Biol Interact 142:223–237

    CAS  Google Scholar 

  • Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M, Miller WA, Toy-Choutka S, Dominik C, Hardin D, Langlois G, Murray M, Ward K, Jessup DA (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to Sea Otters. PLoS ONE 5:e12576. doi:10.1371/journal.pone.0012576

    Google Scholar 

  • Mohamed ZA, Al Shehri AM (2007) Cyanobacteria and their toxins in treated-water storage reservoirs in Abha city, Saudi Arabia. Toxicon 50:75–84

    CAS  Google Scholar 

  • Mohamed ZA (2008) Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 51:17–27

    CAS  Google Scholar 

  • Mohebbi F, Mohsenpour Azari A, Heidari M, Asem A (2012) Cyanobacterium Microcystis aeruginosa bloom in Aras dam reservoir. Int J Environ Res 6:309–312

    CAS  Google Scholar 

  • Moisander PH, McClinton E, Paerl HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442

    CAS  Google Scholar 

  • Momani FA, Smith DW, El-Din MG (2008) Degradation of cyanobacteria toxin by advanced oxidation processes. J Hazard Mater 150:238–249

    Google Scholar 

  • Msagati TAM, Siame BA, Shushu DD (2006) Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquat Toxicol 78:382–397

    CAS  Google Scholar 

  • Nagata S, Tsutsumi T, Yoshida F, Ueno Y (1999) A new type sandwich immunoassay for microcystin: production of monoclonal antibodies specific to the immune complex formed by microcystin and an antimicrocystin monoclonal antibody. Nat Toxins 7:49–55

    CAS  Google Scholar 

  • Namikoshi M, Sun F, Choi BW, Rinehart KL, Carmichael WW, Evans WR, Beasley VR (1995) Seven more microcystins from Homer lake cells: application of the general method for structure assignment of peptides containing,-dehydroamino acid unit(s). J Org Chem 60:3671–3679

    CAS  Google Scholar 

  • Nasri H, El Herry S, Bouaicha N (2008) First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol Environ Saf 71:535–544

    CAS  Google Scholar 

  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253

    CAS  Google Scholar 

  • Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishiwaka T, Carmichael WW, Fujiki H (1992) Liver tumour promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118:420–424

    CAS  Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada K, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529

    CAS  Google Scholar 

  • Nong Q, Komatsu M, Izumo K, Indo HP, Xu B, Aoyama K, Majima HJ, Horiuchi M, Morimoto K, Takeuchi T (2007) Involvement of reactive oxygen species in Microcystin-LR-induced cytogenotoxicity. Free Radic Res 41:1326–1337

    CAS  Google Scholar 

  • Nonga HE, Sandvik M, Miles CO, Lie E, Mdegela RH, Mwamengele GL, Semuguruka WD, Skaare JU (2011) Possible involvement of microcystins in the unexplained mass mortalities of Lesser Flamingo (Phoeniconaias minor Geoffroy) at Lake Manyara in Tanzania. Hydrobiologia 678:167–178

    CAS  Google Scholar 

  • Nybom SMK, Salminen SJ, Meriluoto JAO (2007) Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiol Lett 270:27–33

    CAS  Google Scholar 

  • Odriozola E, Ballabene N, Salamanco A (1984) Poisoning in cattle caused by blue–green algae. Rev Argent Microbiol 16:219–224

    CAS  Google Scholar 

  • Oh HM, Lee SJ, Jang MH, Yoon BD (2000) Microcystin production by Microcystis aeruginosa in a phosphorous-limited chemostat. Appl Environ Microbiol 66:176–179

    CAS  Google Scholar 

  • Okano K, Shimizu K, Kawauchi Y, Maseda H, Utsumi M, Zhang Z, Neilan BA, Sugiura N (2009) Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions. J Toxicol 2009:1–8

    Google Scholar 

  • Okello W, Portmann C, Erhard M, Gademann K, Kurmayer R (2010) Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. Environ Toxicol 25:367–380

    CAS  Google Scholar 

  • Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763

    CAS  Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614

    CAS  Google Scholar 

  • Orr PT, Jones GJ, Hunter RA, Berger K, DePaoli DA, Orr CLA (2001) Ingestion of toxic Microcystis aeruginosa by dairy cattle and the implications for microcystin contamination of milk. Toxicon 39:1847–1854

    CAS  Google Scholar 

  • Ortelli D, Edder P, Cognard E, Jan P (2008) Fast screening and quantitation of microcystins in microalgae dietary supplement products and water by liquid chromatography coupled to time of flight mass spectrometry. Anal Chim Acta 617:230–237

    CAS  Google Scholar 

  • Ott JL, Carmichael WW (2006) LC/ESI/MS method development for the analysis of hepatotoxic cyclic peptide microcystins in animal tissues. Toxicon 47:734–741

    CAS  Google Scholar 

  • Oudra B, Dadi-El Andaloussi M, Vasconcelos VM (2009) Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden river (high-atlas mountains of marrakech, Morocco). Environ Monit Assess 149:437–444

    CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    CAS  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    CAS  Google Scholar 

  • Pan G, Zhang MM, Chen H, Zou H, Yan H (2006a) Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ Pollut 141:195–200

    CAS  Google Scholar 

  • Pan G, Zou H, Chen H, Yuan X (2006b) Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environ Pollut 141:206–212

    CAS  Google Scholar 

  • Pan G, Dai L, Li L, He L, Li H, Bi L, Gulati RD (2012) Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ Sci Technol 46:5077–5084

    CAS  Google Scholar 

  • Papadimitriou T, Kagalou I, Stalikas C, Pilidis G, Leonardos ID (2012) Assessment of microcystin distribution and biomagnifications in tissues of aquatic food web compartments from a shallow lake. Ecotoxicology 21:1155–1166

    CAS  Google Scholar 

  • Park HD, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343

    CAS  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    CAS  Google Scholar 

  • Pavlova V, Babica P, Todorova D, Bratanova Z, Maršálek B (2006) Contamination of some reservoirs and lakes in Republic of Bulgaria by microcystins. Acta Hydrochim Hydrobiol 34:437–441

    CAS  Google Scholar 

  • Pearson LA, Barrow KD, Neilan BA (2007) Characterization of the 2-hydroxy-acid dehydrogenase McyI, encoded within the microcystin biosynthesis gene cluster of Microcystis aeruginosa PCC7806. J Biol Chem 282:4681–4692

    CAS  Google Scholar 

  • Pereira S, Saker ML, Vale M, Vasconcelos VM (2009) Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bull Environ Contam Toxicol 83:81–84

    CAS  Google Scholar 

  • Peuthert A, Chakrabarti S, Pflugmacher S (2007) Uptake of microcystins-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Inc Environ Toxicol 22:436–442

    CAS  Google Scholar 

  • Pflugmacher S, Jung K, Lundvall L, Neumann S, Peuthert A (2006) Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress. Environ Toxicol Chem 25:2381–2387

    CAS  Google Scholar 

  • Pichardo S, Pflugmacher S (2011) Study of the antioxidant response of several bean variants to irrigation with water containing MC-LR and cyanobacterial crude extract. Environ Toxicol 26:300–306

    CAS  Google Scholar 

  • Pierce RH, Kirkpatrick GJ (2001) Innovative techniques for harmful algal toxin analysis. Environ Toxicol Chem 20:107–114

    CAS  Google Scholar 

  • Pietsch C, Wiegand C, Amé MV, Nicklisch A, Wunderlin D, Pflugmacher S (2001) The Effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–542

    CAS  Google Scholar 

  • Pilotto LS, Douglas RM, Burch MD, Cameron S, Beers M, Rouch GR, Robinson P, Kirk M, Cowie CT, Hardiman S, Moore C, Attewell RG (1997) Health effects of exposure to cyanobacteria (blue-green algae) during recreational water-related activities. Aust N Z J Public Health 21:562–566

    CAS  Google Scholar 

  • Pilotto LS, Hobson P, Burch MD, Ranmuthugala G, Attewell R, Weightman W (2004) Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust N Z J Public Health 28:220–224

    Google Scholar 

  • Pinho GLL, da Rosa CM, Maciel FE, Bianchini A, Yunes JS, Proença LAO, Monserrat JM (2005) Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicol Environ Saf 61:353–360

    CAS  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26

    CAS  Google Scholar 

  • Prakash S, Lawton LA, Edwards C (2009) Stability of toxigenic Microcystis blooms. Harmful Algae 8:377–384

    CAS  Google Scholar 

  • Prieto A, Campos A, Cameán A, Vasconcelos V (2011) Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicol Environ Saf 74:1973–1980

    CAS  Google Scholar 

  • Puschner B, Galey FD, Johnson B, Dickie CW, Vondy M, Francis T, Holstege DM (1998) Blue-green algae toxicosis in cattle. J Am Vet Med Assoc 213:1605–1607

    CAS  Google Scholar 

  • Qiao RP, Li N, Qi XH, Wang QS, Zhuang YY (2005) Degradation of microcystin-RR by UV light in the presence of hydrogen peroxide. Toxicon 45:745–752

    CAS  Google Scholar 

  • Qiu T, Xie P, Liu Y, Li G, Xiong Q, Hao L, Li H (2009) The profound effects of microcystin on cardiac antioxidant enzymes, mitochondrial function and cardiac toxicity in rat. Toxicology 257:86–94

    CAS  Google Scholar 

  • Ramani A, Rein K, Shetty KG, Jayachandran K (2012) Microbial degradation of microcystin in Florida’s freshwaters. Biodegradation 23:35–45

    CAS  Google Scholar 

  • Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K (2004) Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci USA 101:568–573

    CAS  Google Scholar 

  • Rantala A, Rizzi E, Castiglioni B, de Bellis G, Sivonen K (2008) Identification of hepatotoxin-producing cyanobacteria by DNA-chip. Environ Microbiol 10:653–664

    CAS  Google Scholar 

  • Rao PV, Bhattacharya R (1996) The cyanobacterial toxin microcystin-LR induced DNA damage in mouse liver in vivo. Toxicology 114:29–36

    CAS  Google Scholar 

  • Rapala J, Sivonen K, Lyra C, Niemelae SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    CAS  Google Scholar 

  • Rapala J, Berg KA, Lyra C, Niemi RM, Manz W, Suomalainen S, Paulin L, Lahti K (2005) Paucibacter toxinivorans gen. nov., sp. Nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 55:1563–1568

    CAS  Google Scholar 

  • Rastogi RP, Richa, Sinha RP (2009) Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 8:155–181

    Google Scholar 

  • Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27:521–539

    CAS  Google Scholar 

  • Rejmánková E, Komárek J, Dix M, Komárková J, Girón N (2011) Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologica 41:296–302

    Google Scholar 

  • Rodríguez E, Onstad GD, Kull PJT, Metcalf JS, Acero JL, von Gunten U (2007) Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res 41:3381–3391

    Google Scholar 

  • Rojo C, Segura M, Cortés F, Rodrigo MA (2013) Allelopathic effects of microcystin-LR on the germination, growth and metabolism of five charophyte species and a submerged angiosperm. AquToxicol 144–145:1–10

    Google Scholar 

  • Romo S, Soria J, Fernández F, Ouahid Y, Barón-Solá A (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol 58:513–522

    CAS  Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 79:686–692

    Google Scholar 

  • Saito T, Okana K, Park HD, Itayama T, Inamori Y, Neilan BA, Burns BP, Sugiura N (2003) Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229:271–276

    CAS  Google Scholar 

  • Saker ML, Jungblut AD, Neilan BA, Rawn DFK, Vasconcelos VM (2005) Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 46:555–562

    CAS  Google Scholar 

  • Saker ML, Welker M, Vasconcelos VM (2007) Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Appl Microbiol Biotechnol 73:1136–1142

    CAS  Google Scholar 

  • Sano T, Beattie KA, Codd GA, Kaya K (1998) Two (Z)-Dehydrobutyrine-containing microcystins from a hepatotoxic bloom of Oscillatoria agardhii from Soulseat Loch, Scotland. J Nat Prod 61:851–853

    CAS  Google Scholar 

  • Saqrane S, Ouahid Y, El Ghazali I, Oudra B, Bouarab L, del Campo FF (2009) Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach. Toxicon 53:786–796

    CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SE (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37 year whole ecosystem experiment. Proc Nat Acad Sci USA 105:11254–11258

    CAS  Google Scholar 

  • Sekadende BC, Lyimo TJ, Kurmayer R (2005) Microcystin production by cyanobacteria in the Mwanza Gulf (Lake Victoria, Tanzania). Hydrobiologia 543:299–304

    CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10:2476–2483

    CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Peleato ML, Fillat MF (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicol 19:1167–1173

    CAS  Google Scholar 

  • Sheng JW, He M, Shi HC, Qian Y (2006) A comprehensive immunoassay for the detection of microcystins in waters based on polyclonal antibodies. Anal Chim Acta 572:309–315

    CAS  Google Scholar 

  • Shimizu K, Maseda H, Okano K, Itayama T, Kawauchi Y, Chen R, Utsumi M, Zhang Z, Sugiura N (2011) How microcystin-degrading bacteria express microcystin degradation activity. Lakes Reserv Res Manag 16:169–178

    CAS  Google Scholar 

  • Siegl G, MacKintosh C, Stitt M (1990) Sucrose phosphate synthetase is dephosphorylated by protein phosphatase 2A in spinach leaves. FEBS Lett 270:198–202

    CAS  Google Scholar 

  • Sielaff H, Dittmann E, Tandeau De Marsac N, Bouchier C, Von Döhren H, Börner T, Schwecke T (2003) The mcyF gene of the microcystin biosynthetic gene cluster from Microcystis aeruginosa encodes an aspartate racemase. Biochem J 373:909–916

    CAS  Google Scholar 

  • Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K (2010) Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Appl Environ Microbiol 71:3797–3805

    Google Scholar 

  • Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56:2658–2666

    CAS  Google Scholar 

  • Sivonen K, Namikoshi M, Evans WR, Carmichael WW, Sun F, Rouhiainen L, Luukkainen R, Rinehart KL (1992) Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol 58:2495–2500

    CAS  Google Scholar 

  • Sivonen K, Namikoshi M, Luukkainen R, Färdig M, Rouhiainen L, Evans WR, Carmichael WW, Rinehart KL, Niemelä SI (1995) Variation of cyanobacterial hepatotoxins in Finland. In: Munawar M, Luotola M (eds) The contaminants in the Nordic ecosystem, dynamics, processes and fate. Ecovision world monograph series. SPB Academic Publishing, Amsterdam, pp 163–169

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E and FN Spon, London, pp 41–111

    Google Scholar 

  • Smith JL, Schulz KL, Zimba PV, Boyer GL (2010) Possible mechanism for the foodweb transfer of covalently bound microcystins. Ecotoxicol Environ Saf 73:757–761

    CAS  Google Scholar 

  • Soares RM, Cagido VR, Ferraro RB, Meyer-Fernandes JR, Rocco PRM, Zin WA, Azevedo SMFO (2007) Effects of microcystin-LR on mouse lungs. Toxicon 50:330–338

    CAS  Google Scholar 

  • Soll MD, Williams MC (1985) Mortality of a white rhinoceros (Ceratotherium simum) suspected to be associated with the blue–green alga Microcystis aeruginosa. J S Afr Vet Assoc 56:49–51

    CAS  Google Scholar 

  • Song W, Terri T, Kathleen R, Kevin E (2005) Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environ Sci Technol 39:6300–6305

    CAS  Google Scholar 

  • Song W, Bardowell S, O’shea KE (2007) Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). Environ Sci Technol 41:5336–5341

    CAS  Google Scholar 

  • Spoof L, Neffling MR, Meriluoto J (2009) Separation of microcystins and nodularins by ultra performance liquid chromatography. J Chromatogr B 877:3822–3830

    CAS  Google Scholar 

  • Stewart I, Seawright AA, Shaw GR (2008) Cyanobacterial poisoning in livestock, wild mammals and birds–an overview. In: Kenneth HH (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, Heidelberg, pp 613–638

    Google Scholar 

  • Surono IS, Collado MC, Salminen S, Meriluoto J (2008) Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food Chem Toxicol 46:502–507

    CAS  Google Scholar 

  • Svirčev Z, Krstič S, Miladinov-Mikov M, Baltić V, Vidović M (2009) Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health C 27:36–55

    Google Scholar 

  • Svirčev Z, Baltić V, Gantar M, Juković M, Stojanović D, Baltić M (2010) Molecular aspects of microcystin-induced hepatotoxicity and hepatocarcinogenesis. J Environ Sci Health C 28:39–59

    Google Scholar 

  • Szigeti ZM, Jámbrik K, Roszik J, M-Hamvas M, Tándor I, Beyer D, Vasas G, Vereb G, Surányi G, Máthe C (2010) Cytoskeletal and developmental alterations in Ceratophyllum demersum induced by microcystin-LR, a cyanobacterial toxin. Aquat Bot 92:179–184

    CAS  Google Scholar 

  • Takeda S, Mano S, Ohto M, Nakemura K (1994) Inhibitors of protein phosphatases 1 and 2A block the sugar-inducible gene expression in plants. Plant Physiol 106:567–574

    CAS  Google Scholar 

  • Takenaka S, Watanabe MF (1997) Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease. Chemosphere 34:749–757

    CAS  Google Scholar 

  • Te Harn S, Yew-Hoong Gin K (2011) The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae 10:319–329

    Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    CAS  Google Scholar 

  • Toivola DM, Eriksson JE (1999) Toxins affecting cell signalling and alteration of cytoskeletal structure. Toxicol In Vitro 13:521–530

    CAS  Google Scholar 

  • Torokne A, Palovics A, Bankine M (2001) Allergenic (sensitization, skin and eye irritation) effects of freshwater cyanobacteria-experimental evidence. Inc Environ Toxicol 16:512–516

    CAS  Google Scholar 

  • Towner RA, Sturgeon SA, Hore KE (2002) Assessment of in vivo oxidative lipid metabolism following acute microcystin-LR-induced hepatotoxicity in rats. Free Radic Res 36:63–71

    CAS  Google Scholar 

  • Tsuji K, Naito S, Kondo F, Ishikawa N, Watanabe MF, Suzuki M, Harada K (1994) Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerisation. Environ Sci Technol 28:173–177

    CAS  Google Scholar 

  • Tsuji K, Watanuki T, Kondo F, Watanabe MF, Nakazawa H, Suzuki S, Nakazawa H, Suzuki M, Uchida H, Harada KI (1995) Stability of microcystins from cyanobacteria-II. Effect of UV light on decomposition and isomerization. Toxicon 33:1619–1631

    CAS  Google Scholar 

  • Tyagi MB, Singh DP, Kumar A, Jha PN, Sinha RP, Kumar A (2006) Hepatotoxicity of Microcystis aeruginosa strains growing as blooms in certain eutrophic ponds. EXCLI J 5:66–78

    Google Scholar 

  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park HD, Chen GC, Yu SH (1996) Detection of microcystins, a blue–green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317–1321

    CAS  Google Scholar 

  • Utkilen H, Gjølme N (1992) Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl Environ Microbiol 58:1321–1325

    CAS  Google Scholar 

  • Utkilen H, Gjølme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800

    CAS  Google Scholar 

  • Vaishampayan A, Sinha RP, Häder DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Bot Rev 67:453–516

    Google Scholar 

  • Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K (2003) Quantitative real-time PCR for determination of microcystin synthetase e copy numbers for Microcystis and Anabaena in lakes. Appl Environ Microbiol 69:7289–7297

    CAS  Google Scholar 

  • Valeria AM, Echenique JR, Pflugmacher S, Wunderlin DA (2006) Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba-Argentina). Biodegradation 17:447–455

    Google Scholar 

  • Van Apeldoorn ME, van Egmond HP, Speijers GJA, Bakker GJI (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60

    Google Scholar 

  • Vasconcelos VM (1999) Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz J Med Biol Res 32:249–254

    CAS  Google Scholar 

  • Vasconcelos V, Martins A, Vale M, Antunes A, Azevedo J, Welker M, Lopez O, Montejano G (2010) First report on the occurrence of microcystins in planktonic cyanobacteria from Central Mexico. Toxicon 56:425–431

    CAS  Google Scholar 

  • Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey SA (2011) Rapid surface plasmon resonance immunobiosensor assay for microcystin toxins in blue-green algae food supplements. Talanta 84:638–643

    CAS  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 15:5187–5190

    Google Scholar 

  • Wang JF, Wu PF, Chen J, Yan H (2010) Biodegradation of microcystin-RR by a new Iisolated Sphingopyxis sp USTB-05. Chin J Chem Eng 18:108–112

    CAS  Google Scholar 

  • Wang X, Ying F, Chen Y, Han X (2012) Microcystin (-LR) affects hormones level of male mice by damaging hypothalamic-pituitary system. Toxicon 59:205–214

    CAS  Google Scholar 

  • Wang Z, Xiao B, Song L, Wu X, Zhang J, Wang C (2011) Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology 20:803–814

    CAS  Google Scholar 

  • Wei Y, Weng D, Li F, Zou X, Young DO, Ji J, Shen P (2008) Involvement of JNK regulation in oxidative stress-mediated murine liver injury by microcystin-LR. Apoptosis 13:1031–1042

    CAS  Google Scholar 

  • Weng D, Lu Y, Wei Y, Liu Y, Shen P (2007) The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232:15–23

    CAS  Google Scholar 

  • Willame R, Jurczak T, Iffly JF, Kull T, Meriluoto J, Hoffmann L (2005) Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 551:99–117

    CAS  Google Scholar 

  • Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG (2010) Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 55:897–903

    CAS  Google Scholar 

  • Wörmer L, Huerta-Fontela M, Cirés S, Carrasco D, Quesada A (2010) Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environ Sci Technol 44:3002–3007

    Google Scholar 

  • Xiong Q, Xie P, Li H, Hao L, Li G, Qiu T, Liu Y (2009) Involvement of Fas/FasL system in apoptotic signaling in testicular germ cells of male Wistar rats injected i.v. with microcystins. Toxicon 54:1–7

    CAS  Google Scholar 

  • Xiong Q, Xie P, Li H, Hao L, Li G, Qiu T, Liu Y (2010) Acute effects of microcystins exposure on the transcription of antioxidant enzyme genes in three organs (liver, kidney, and testis) of male Wistar rats. J Biochem Mol Toxicol 24:362–367

    Google Scholar 

  • Yanfen F, Yingping H, Jing Y, Pan W, Genwei C (2011) Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water. Environ Sci Technol 45:1593–1600

    Google Scholar 

  • Ye W, Liu X, Tan J, Li D, Yang H (2009) Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae 8:637–644

    CAS  Google Scholar 

  • Yin L, Huang J, Huang W, Li D, Wang G, Liu Y (2005) Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon 46:507–512

    CAS  Google Scholar 

  • Young FM, Morrison LF, James J, Codd GA (2008) Quantification and localization of microcystins in colonies of a laboratory strain of Microcystis (cyanobacteria) using immunological methods. Eur J Phycol 43:217–225

    CAS  Google Scholar 

  • Yuan G, Xie P, Zhang X, Tang R, Gao Y, Li D, Li L (2012) In vivo studies on the immunotoxic effects of microcystins on rabbit. Enviro Toxicol 27:83–89

    CAS  Google Scholar 

  • Žegura B, Sedmak B, Filipič M (2003) Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41:41–48

    Google Scholar 

  • Žegura B, Lah TT, Filipié M (2004) The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 20:59–68

    Google Scholar 

  • Žegura B, Lah TT, Filipic M (2006) Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mut Res 611:25–33

    Google Scholar 

  • Žegura B, Zajc I, Lah TT, Filipic M (2008) Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon 51:615–623

    Google Scholar 

  • Žegura B, Štraser A, Filipič M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins-a review. Mut Res 727:16–41

    Google Scholar 

  • Zhang H, Zhang J, Chen Y, Zhu Y (2007a) Influence of intracellular Ca2+, mitochondria membrane potential, reactive oxygen species, and intracellular ATP on the mechanism of microcystin-LR induced apoptosis in Carassius auratus lymphocytes in vitro. Environ Toxicol 22:559–564

    CAS  Google Scholar 

  • Zhang X, Xie P, Li D, Shi Z (2007b) Haematological and plasma biochemical responses of crucian carp (Carassius auratus) to intraperitoneal injection of extracted microcystins with the possible mechanisms of anemia. Toxicon 49:1150–1157

    CAS  Google Scholar 

  • Zhang X, Hu HY, Hong Y, Yang J (2008) Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR. FEMS Microbiol Lett 288:241–246

    CAS  Google Scholar 

  • Zhang D, Xie P, Liu Y, Qiu T (2009) Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci Total Environ 407:2191–2199

    CAS  Google Scholar 

  • Zhang D, Xie P, Chen J (2010a) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bull Environ Contam Toxicol 84:202–207

    CAS  Google Scholar 

  • Zhang M, Pan G, Yan H (2010b) Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05. J Environ Sci 22:168–175

    CAS  Google Scholar 

  • Zhang XX, Zhang Z, Fu Z, Wang T, Qin W, Xu L, Cheng S, Yang L (2010c) Stimulation effect of microcystin-LR on matrix metalloproteinase-2/-9 expression in mouse liver. Toxicol Lett 199:377–382

    CAS  Google Scholar 

  • Zhang X, Xie P, Li D, Shi Z, Wang J, Yuan G, Zhao Y, Tang R (2011a) Anemia induced by repeated exposure to cyanobacterial extracts with explorations of underlying mechanisms. Inc Environ Toxicol 26:472–479

    CAS  Google Scholar 

  • Zhang ML, Yan H, Pan G (2011b) Microbial degradation of microcystin-LR by Ralstonia solanacearum. Environ Technol 33:1779–1787

    CAS  Google Scholar 

  • Zhao Y, Xie P, Tang R, Zhang X, Li L, Li D (2008) In vivo studies on the toxic effects of microcystins on mitochondrial electron transport chain and ion regulation in liver and heart of rabbit. Comp Biochem Physiol C: Toxicol Pharmacol 148:204–210

    Google Scholar 

  • Zhao S, Xie P, Li G, Jun C, Cai Y, Xiong Q, Zhao Y (2012) The proteomic study on cellular responses of the testes of zebrafish (Danio rerio) exposed to microcystin-RR. Proteomics 12:300–312

    CAS  Google Scholar 

  • Zhou Y, Yuan J, Wu J, Han X (2012) The toxic effects of microcystin-LR on rat spermatogonia in vitro. Toxicol Lett 212:48–56

    CAS  Google Scholar 

  • Zhu J, Lu K, Zhang C, Liang J, Hu Z (2011) Biochemical and ultrastructural changes in the hepatopancreas of Bellamya aeruginosa (Gastropoda) fed with toxic cyanobacteria. Sci World J 11:2091–2105

    CAS  Google Scholar 

Download references

Acknowledgments

Rajesh P. Rastogi is thankful to the Graduate School, Chulalongkorn University (Ratchadaphiseksomphot Endowment Fund) and Faculty of Science for Post-Doctoral Fellowship. Aran Incharoensakdi thanks Commission on Higher Education, Thailand and Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University, for the National Research University Project Grant (FW0659A) and the Research Grant (RES560530052-FW), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aran Incharoensakdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, R.P., Sinha, R.P. & Incharoensakdi, A. The cyanotoxin-microcystins: current overview. Rev Environ Sci Biotechnol 13, 215–249 (2014). https://doi.org/10.1007/s11157-014-9334-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9334-6

Keywords

Navigation