Skip to main content
Log in

Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

This critical review emphasizes on the potential applications of low-cost lignocellulosic material in the field of heavy metal pollution remediation. It contains the information related to binding mechanism, relative uptake capacities, effect of modification on increment in uptake capacities, equilibrium, kinetic and thermodynamic modeling involved. This effort offers a good understanding about the role of functional groups in biosorption process. However, there exists a large barrier which inhibits the industry to switch on the biosorption process in place of conventional technologies. Future investigations on (1) assessment of low-cost lignocellulosic materials on multi-metal samples and real world samples, (2) low-cost methods of modification, (3) development of multifunctional lignocellulosic materials can help to decrease this barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akar ST, Arslan S, Alp T, Arslan D, Akar T (2012) Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: equilibrium, kinetic, thermodynamic and mechanism analysis. Chem Eng J 185–186:82–90

    Google Scholar 

  • Akar T, Celik G, Ari AG, Akar ST (2013) Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption. J Chem Technol Biotechnol 88:680–689

    CAS  Google Scholar 

  • Al-Garni SM (2005) Biosorption of lead br gram −ve cap[sulated and non-capsulated bacteria. Water SA 31:345–350

    CAS  Google Scholar 

  • Ali SZ, Athar M, Salman M, Din MI (2011) Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum—a green approach. Hydrol Current Res 2:118. doi:10.4172/2157-7587.1000118

    Google Scholar 

  • Alomá I, Martín-Lara MA, Rodríguez IL, Blázquez G, Calero M (2012) Removal of nickel(II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem Eng 43:275–281

    Google Scholar 

  • Aman T, Kazi AA, Sabri MU, Bano Q (2008) Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloid Surf B 63:116–121

    CAS  Google Scholar 

  • Anwar J, Shafique U, Salman M, Waheed-uz-Zaman A, Anwar S, Anzano JM (2009) Removal of Chromium(III) by using coal as adsorbent. J Hazard Mater 171:797–801

    CAS  Google Scholar 

  • Anwar J, Shafique U, Waheed-uz-Zaman A, Salman M, Dar A, Anwar S (2010a) Removal of Pb(II) and Cd(II) from water nby adsorption on peels of banana. Bioresour Technol 101:1752–1755

    CAS  Google Scholar 

  • Anwar J et al (2010b) Removal of chromium from water using pea waste—a green approach. Green Chem Lett Rev 3:239–243

    CAS  Google Scholar 

  • Anwar J et al (2011) Removal of chromium on Polyalthia longifolia leaves biomass. Int J Phytoremed 13:410–420

    CAS  Google Scholar 

  • Arbanah M, Najwa MRM, Ku Halim HM (2012) Biosorption of Cr(III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind 1:152–162

    CAS  Google Scholar 

  • Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141:77–85

    CAS  Google Scholar 

  • Asberry HB, Kuo C, Gung C, Conte ED, Suenc S (2014) Characterization of water bamboo husk biosorbents and their application in heavy metal ion trapping. Microchem J 113:59–63

    CAS  Google Scholar 

  • Athar M, Farooq U, Aslam M, Salman M (2013) Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies. Appl Water Sci 3:665–672. doi:10.1007/s13201-013-0115-0

    CAS  Google Scholar 

  • Athar M, Farooq U, Ali SZ, Salman M (2014) Insight into the binding of copper(II) by non-toxic biodegradable material (Oryza sativa): effect of modification and interfering ions. Clean Technol Environ Policy 16:579–590

  • Banerjee K, Ramesh ST, Nidheesh PV, Bharathi KS (2012) A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions. Iran J Energy Environ 3:143–156

    Google Scholar 

  • Bernardo GR, Rene RJ, Catalina ADM (2009) Chromium(III) uptake by agro-waste biosorbents: chemical characterization, sorption–desorption studies, and mechanism. J Hazard Mater 170:845–854

    CAS  Google Scholar 

  • Bingöl D, Hercan M, Elevli S, Kılıç E (2012) Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresour Technol 112:111–115

    Google Scholar 

  • Blázquez G, Calero M, Hernáinz F, Tenorio G, Martín-Lara MA (2010) Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production. Chem Eng J 160:615–622

    Google Scholar 

  • Boota R, Bhatti HN, Hanif MA (2009) Removal of Cu(II) and Zn(II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass. Sep Purif Technol 44:4000–4022

    CAS  Google Scholar 

  • Calero M, Hernainz F, Blázquez G, Martín-Lara MA, Tenorio G (2009) Biosorption kinetics of Cd(II), Cr(III) and Pb(II) in aqueous solutions by olive stone. Braz J Chem Eng 26:265–273

    CAS  Google Scholar 

  • Ceribasi HI, Yetis U (2001) Biosorption of Ni(II) and Pb(II) by Phanerochaete chrysoporium from a binary metal system—kinetics. Water SA 27:15–20

    CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid Surf 46B:101–107

    Google Scholar 

  • Chen S, Yue Q, Gao B, Xu X (2010) Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. J Colloid Inter Sci 39:256–264

    Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical appliactions. Environ Int 36:299–307

    CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    CAS  Google Scholar 

  • Chouchene A, Jeguirim M, Trouvé G (2013) Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. DOI, Clean Technol Environ Policy. doi:10.1007/s10098-10013-10680-10099

    Google Scholar 

  • Chowdhury S, Saha PD (2011) Biosorption kinetics, thermodynamics and isosteric heat os sorption of Cu(II) on to Tamarindus indica seed powder. Colloid Surf B Biointerfaces 88:697–705

    CAS  Google Scholar 

  • Cruz-Olivares J, Pérez-Alonso C, Barrera-Díaz C, Natividad R, Chaparro-Mercado MC (2011) Thermodynamical and analytical evidence of lead ions chemiosorption onto Pimenta dioica. Chem Eng J 166:814–821

    CAS  Google Scholar 

  • Dang VBH, Doan HD, Dang-Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresour Technol 100:211–219

    CAS  Google Scholar 

  • Danis U (2010) Biosorption of copper(II) from aqueous solutions by Pleurotus cornucopiae. Paper no. 2010-252. Ohrid, Republic of Macedonia: Balwois Conference

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    CAS  Google Scholar 

  • Deng SB, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177

    CAS  Google Scholar 

  • Dilek FB, Erbay A, Yetis U (2002) Ni(II) biosorption by Polyporous versicolor. Process Biochem 32:723–726

    Google Scholar 

  • Din MI, Mirza ML (2013) Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni(II) ions from aqueous solutions. Int J Bio Macromol 54:99–108

    CAS  Google Scholar 

  • Din MI, Farooq U, Athar M, Mirza ML (2013a) Environmentally benevolent urea modified Saccharum bengalense as a high capacity biosorbent for removal of Pb(II) ions: metal uptake modeling and adsorption efficiency. Desalin Water Treat. doi:10.1080/19443994.19442013.19808584

    Google Scholar 

  • Din MI, Mirza ML, Ata S, Athar M, Mohsin I (2013) Thermodynamics of biosorption for removal of Co(II) Ions by an efficient and ecofriendly biosorbent (Saccharum bengalense): kinetics and isotherm modeling. J Chem: Article ID 528542. doi:10.1155/2013/528542

  • Din MI, Hussain Z, Mirza ML, Shah AT, Athar MM (2014) Adsorption optimization of lead (II) using Saccharum bengalense as a non-conventional low-cost biosorbent: isotherm and thermodynamic modeling. Int J Phytoremed 16:889–908

    CAS  Google Scholar 

  • dos Santos WNL, Cavalcante DD, Da Silva EGP, das Virgens CF, Dias FS (2011) Biosorption of Pb(II) and Cd(II) ions by Agave sisalana (sisal fiber). Microchem J 97:269–273

    Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2008) Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J Hazard Mater 152:100–112

    CAS  Google Scholar 

  • Eom Y, Won JH, Ryu JY, Lee TG (2011) Biosorption of mercury (II) ions from aqueous solution by garlic (Allium sativum L.) powder. Korean J Chem Eng 28:1439–1443

    CAS  Google Scholar 

  • Eslamzadeh T, Nasernejad B, Pour BB, Zamani A, Bygi ME (2004) Removal of heavy metals from aqueous solution by carrot residues. Iran J Sci Technol Trans A28A1:161–167

  • Farooq U, Khan MA, Athar M (2007) Triticum aestivum: a novel biosorbent for lead(II) ions. Agrochimica L1:309–318

    Google Scholar 

  • Farooq U, Khan MA, Athar M, Sakina M, Ahmad M (2010a) Environmentally benign urea-modified Triticum aestivum biomass for lead (II) elimination from aqueous solutions. Clean 38:49–56

    CAS  Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010b) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour Technol 101:5043–5053

    CAS  Google Scholar 

  • Farooq U, Khan MA, Athar M, Konzinski JA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II)ions from aqueous solution. Chem Eng J 171:400–410

    CAS  Google Scholar 

  • Feng N, Guo X (2012) Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans Nonferrous Met Soc China 22:1224–1231

    CAS  Google Scholar 

  • Feng N, Guo X, Liang S (2010) Enhanced Cu(II) adsorption by orange peels modified with sodium hydroxide. Trans Nonferrous Met Soc China 20:146–152

    Google Scholar 

  • Feng N, Guo X, Liang S, Zhu Y, Liu J (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185:49–54

    CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Ganji T, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271

    CAS  Google Scholar 

  • Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W (2008) Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J Hazard Mater 31:446–452

    Google Scholar 

  • García-Mendieta A, Olguín MT, Solache-Ríos M (2012) Biosorption properties of green tomato husk (Physalis philadelphica Lam) for iron, manganese and iron–manganese from aqueous systems. Desalination 284:167–174

    Google Scholar 

  • Ghodbane I, Hamdaoui O (2008) Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. J Hazard Mater 160:301–309

    CAS  Google Scholar 

  • Giri AK, Patel R, Mandal S (2012) Removal of Cr(VI) from aqueous solution by Eichhornia crassipes root biomass-derived activated carbon. Chem Eng J 186:71–81

    Google Scholar 

  • Gonen F, Serin DS (2012) Adsorption study of orange peels: removal of Ni(II) ions from aqueous solution. Afr J Biotechnol 11:1250–1258

    CAS  Google Scholar 

  • Goyal P, Srivastava S (2009) Characterization of novel Zea mays based biomaterial designed for toxic metals biosorption. J Hazard Mater 172:1206–1211

    CAS  Google Scholar 

  • Gupta S, Babu BV (2009) Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: equilibrium, kinetics and regeneration studies. Chem Eng J 150:352–365

    CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetic and equilibrium studies. J Hazard Mater 152:407–414

    CAS  Google Scholar 

  • Haquea MN, Morrison GM, Perrusquía G, Gutierŕez M, Aguilera AF, Cano-Aguilera I, Gardea-Torresdey JL (2007) Characteristics of arsenic adsorption to sorghum biomass. J Hazard Mater 145:30–35

    Google Scholar 

  • Ho YS (2006) Review of pseudo second-order models for adsorption systems. J Hazard Mater B136:681–689

    Google Scholar 

  • Hu X, Zhao M, Song G, Huang H (2011) Modification of pineapple peel fiber with succinic anhydride for Cu(II), Cd(II) and Pb(II) removal from aqueous solutions. Environ Technol 32:739–746

    CAS  Google Scholar 

  • Ibrahim HS, Ammar NS, Soylak M, Ibrahim M (2012) Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta Part A Mol Biomol Spectrosc 96:413–420

    CAS  Google Scholar 

  • Jacques RA, Lima EC, Dias SLP, Mazzocato AC, Pavan FA (2007) Yellow passion-fruit shell as biosorbent to remove Cr(III) and Pb(II) from aqueous solution. Sep Purif Technol 57:193–198

    CAS  Google Scholar 

  • Javaid A, Bajwa R (2007) Biosorption of Cr(III) ions from tannery wastewater by Pleurotus ostreatus. Mycopathologia 5:71–79

    Google Scholar 

  • Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass bioener 35:1675–1682

    CAS  Google Scholar 

  • Jiménez-Cedillo MJ, Olguín MT, Fall C, Colin-Cruz A (2013) As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). J Environ Manag 117:242–252

    Google Scholar 

  • Kakalanga SJ, Jabulani XB, Olutoyin OB, Utieyin OO (2012) Screening of agricultural waste for Ni(II) asorption: kinetics, equilibrium and thermodynamic studies. Int J Phys Sci 7:2525–2538

    CAS  Google Scholar 

  • Kelly-Vargas K, Cerro-Lopez M, Reyna-Tellez S, Bandala ER, Sanchez-Salas JL (2012) Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys Chem Earth 37–39:26–29

    Google Scholar 

  • Khoramzadeh E, Nasernejad B, Halladj R (2013) Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 44:266–269

    CAS  Google Scholar 

  • Krishnani KK, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechnasim of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234

    CAS  Google Scholar 

  • Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97:104–109

    CAS  Google Scholar 

  • Kumar PS, Ramalingam S, Sathyaselvabala V, Kirupha SD, Murugesan A, Sivanesan S (2012) Removal of Cd(II) from aqueous solution by agricultural waste cashew nut shell. Korean J Chem Eng 29:756–768

    CAS  Google Scholar 

  • Kurniawan A, Kosasih AN, Febriano J, Ju YH, Sunarso J, Indraswati N (2011) Evaluation of cassava peel waste as lowcost biosorbent for Ni sorption: equilibrium, kinetics, thermodynamics and mechanisms. Chem Eng J 172:158–166

    CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    CAS  Google Scholar 

  • Lasheen MR, Ammar NS, Ibrahim HS (2012) Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies. Solid State Sci 14:202–210

    CAS  Google Scholar 

  • Lawal OS, Sanni AR, Ajayi IA, Rabiu OO (2010) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum. J Hazard Mater 177:829–835

    CAS  Google Scholar 

  • Lee B, Rowell RM (2004) Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers. J Natural Fibers 1:97–108

    CAS  Google Scholar 

  • Liping D, Yingying S, Hua S, Xinting W, Xiaobin Z (2007) Sorption ans desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    Google Scholar 

  • Lokeshwari N, Joshi K (2009) Biosorption of heavy metal (chromium) using biomass. Glob J Environ Res 3:29–35

    CAS  Google Scholar 

  • Mahajan G, Sud D (2013) Application of ligno-cellulosic waste material for material for heavy metal ions removal from aqueous solution. J Environ Chem Eng 1:1020–1027

    CAS  Google Scholar 

  • Manasi Rajesh V, Kumar ASK, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185

    CAS  Google Scholar 

  • Manzoor Q, Nadeem R, Iqbal M, Saeed R, Ansari TM (2013) Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media. Bioresour Technol 132:446–452

    CAS  Google Scholar 

  • Marin ABP, Aguilar MI, Ortuno JF, Meseguer VF, Saez J, Florenz M (2010) Biosorption of Zn(II) by orange waste in batch and packed bed systems. J Chem Technol Biotechnol 85:1310–1318

    Google Scholar 

  • Marin-Rangel VM, Cortes-Martines R, Villanueva RAC, Garnica-Romo MG, Martinez-Flores HE (2012) As(V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia swingle) residues. J Food Sci 71:10–14

    Google Scholar 

  • McKay G, Otterburn MS, Sweeny AG (1981) Surface mass transfer process during colour removal from effluents using silica. Water Res 15:321–331

    Google Scholar 

  • Melcáková I, Ruzovic T (2010) Biosorption of zinc from aqueous solution using algae and biomass. Nova Biotechnol 10:33–43

    Google Scholar 

  • Memon SQ, Memon N, Shah SW, Khuhawar MY, Bhanger MI (2007) Sawdust—a green and economical sorbent for the removal of cadmium(II) ions. J Hazard Mater B139:116–121

    Google Scholar 

  • Miretzky P, Cirelli AF (2010) Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180:1–19

    CAS  Google Scholar 

  • Mishra V, Balomajumder C, Agarwal VK (2012) Kinetics, mechanistic and thermodynamics of Zn(II) ion sorption: a modeling approach. Clean Soil Air Water 40:718–727

    CAS  Google Scholar 

  • Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36:2304–2318

    CAS  Google Scholar 

  • Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276:53–59

    Google Scholar 

  • Morsy E (2004) Cunninghamella echinulataa new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189

    Google Scholar 

  • Moussavi G, Barikbin B (2010) Biosorption of chromium(VI) from industrial wastewater onto pistachio hull biomass. Chem Eng J 162:893–900

    CAS  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparitive study of chromium biosorption by red, green and brown seeweed biomass. Chemosphere 70:1128–1134

    CAS  Google Scholar 

  • Murphy V, Tofail SAM, Hughes H, McLoughlin P (2009) A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chem Eng J 148:425–433

    CAS  Google Scholar 

  • Naiya TK, Chowdhury P, Bhattacharya K, Das SK (2009) Sawdust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn(II) and Cd(II) ions from aqueous solutions. Chem Eng J 148:68–79

    CAS  Google Scholar 

  • Nameni M, Moghadam MRA, Aram M (2008) Adsorption os hexavalent chromium aqueous solutions by wheat bran. Int J Environ Sci Technol 5:161–168

    CAS  Google Scholar 

  • Netzahuatl-Muñoz AR, Guillén-Jiménez FDM, Chávez-Gómez B, Villegas-Garrido TL, Cristiani-Urbina E (2012) Kinetic study of the effect of pH on hexavalent and trivalent chromium removal from aqueous solution by Cupressus lusitanica bark. Water Air Soil Pollut 223:625–641

    Google Scholar 

  • Nguyen TAH et al (2013) Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol 148:574–585

    CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Google Scholar 

  • Ofomaja AE, Naidoo EB (2010) Biosorption of lead(II) onto pine cone powder: studies on biosorption performance and process design to minimize biosorbent mass. Carbohydr Polym 82:1031–1042

    CAS  Google Scholar 

  • Okoro IA, Okoro SO (2011) Agricultural byproducts as green chemistry adsorbents for the removal and recovery of metal ions from watewater environment. Cont J Water Air Soil Pollut 2:15–22

    Google Scholar 

  • Osman HE, Badwy RK, Ahmad HF (2010) Usage of some agricultural byproducts in the removal of some heavy metals from industrial wastewater. J Phytol 2:51–62

    Google Scholar 

  • Ozacar M, Sengil IA, Turkmenler H (2008) Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem Eng J 143:32–42

  • Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229

    CAS  Google Scholar 

  • Panda GC, Das SK, Guha AK (2008) Biosorption of cadmium and nickel by functionalized husk of Lathyrus sativus. Colloid Surf B 62:173–179

    CAS  Google Scholar 

  • Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Anal Bioanal Chem 376:26–32

    CAS  Google Scholar 

  • Park D, Yun Y, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

  • Pavasant P, Apitatikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresour Technol 97:2321–2329

    CAS  Google Scholar 

  • Pehlivan E, Cetin S, Yanik BH (2005) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beat pulp and fly ash. J Hazard Mater 135:193–199

    Google Scholar 

  • Pehlivan E, Tran HT, Ouédraogo WKI, Schmidt C, Zachmann D, Bahadir M (2013) Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem 138:133–138

    CAS  Google Scholar 

  • Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J (2010) Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater 177:676–682

    CAS  Google Scholar 

  • Qaiser S, Saleemi AR, Ahmad MM (2007) Heavy metal uptake by agro based waste materials. Electron J Biotechnol 10:409–416

    CAS  Google Scholar 

  • Ramana DKV, Reddy DHK, Yu JS, Seshaiah K (2012) Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water. Chem Eng J 197:24–33

    Google Scholar 

  • Ramos R, Jacome L, Barron J, Rubio L, Coronado R (2002) Adsorption of zinc(II) from an aqueous solution onto activated carbon. J Hazard Mater B90:27–38

    Google Scholar 

  • Reddy DHK, Ramana DKV, Seshaiah K, Reddy AVR (2011) Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination 268:150–157

    CAS  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026

    CAS  Google Scholar 

  • Rehman R, Anwar J, Tariq M, Salman M, Saleem M (2011) Evaluation of batch biosorption of chromium(VI) from aqueous solution by chemically modified Polyalthia longifolia leaves. J Chem Soc Pak 33:846–852

    CAS  Google Scholar 

  • Rehman R, Anwar J, Mahmud T, Salman M, Mahboob S (2012) Optimization of operational conditions for batchwise biosorption of chromium (VI) using chemically treated Alstonia scholaris leaves as biosorbent. J Chem Soc Pak 34:292–298

    CAS  Google Scholar 

  • Rehman R, Shafique U, Anwar J, Ghafoor S (2013) Kinetic and isothermal biosorption studies of Co(II), Cu(II) and Ni(II) using Polyalthia longifolia leaf powder. Asian J Chem 25:8285–8288

    CAS  Google Scholar 

  • Romero-Gonzalez J, Peralta-Videa JR, Rodriguez E, Delgado M, Gardea-Torresdey JL (2006) Potential of Agave lechuguilla biomass for Cr(III) removal from aqueous solutions: thermodynamic studies. Bioresour Technol 97:178–182

    CAS  Google Scholar 

  • Saka C, Sahin O, Kucuk MM (2012) Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters. Int J Environ Sci Technol 9:379–394

    CAS  Google Scholar 

  • Salman M, Athar M, Farooq U, Nazir H, Noor A, Nazir S (2013a) Microwave-assisted urea-modified sorghum biomass for Cr(III) elimination form aqueous solutions. Korean J Chem Eng 30:1257–1264

    CAS  Google Scholar 

  • Salman M, Athar M, Farooq U, Nazir S, Nazir H (2013b) Insight to rapid removal of Pb(II), Cd(II), and Cu(II) from aqueous solution using an agro-based adsorbent Sorghum bicolor L. biomass. Desalin Water Treat 51:4390–4401

    CAS  Google Scholar 

  • Salman M, Athar M, Farooq U, Rauf S, Habiba U (2014) A new approach to modification of an agro-based raw material for Pb(II) adsorption. Korean J Chem Eng 31:467–474

    CAS  Google Scholar 

  • Sen TK, Mohammod M, Maitra S, Dutta BK (2010) Removal of cadmium from aqueous solution using castor seed hull: a kinetic and equilibrium study. Clean Soil Air Water 38:850–858

    CAS  Google Scholar 

  • Shafique U, Ijaz A, Salman M, Waheed-uz-Zaman A, Jamil N, Rehman R, Javaid A (2012) Removal of arsenic from water using pine leaves. J Taiwan Inst Chem Eng 43:256–263

    CAS  Google Scholar 

  • Sharma P, Kumari P, Srivastava S, Sirvastava MM (2006) Biosorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. Int J Miner Process 78:131–139

    Google Scholar 

  • Shoaib A (2012) Removal of Cr(III) ions from tannery wastewater through fungi. Online J Sci Technol 2:74–78

    Google Scholar 

  • Singh KK, Hasan SH, Talat M, Singh VK, Gangwar SK (2009) Removal of Cr(VI) from aqueous solutions using wheat bran. Chem Eng J 151:113–121

    CAS  Google Scholar 

  • Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16:490–495

    CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    CAS  Google Scholar 

  • Subudhi E, Kar NR (2008) Rhizopus arrhizusean efficient biosorbent for copper effluent treatment. Int J Integr Biol 2:166–171

    CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestrating heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027

    CAS  Google Scholar 

  • Taha GM, Arifen AE, El-Nahas S (2011) Removal efficiency of potato peels as a new biosorbent material for uptake of Pb(II), Cd(II) and Zn(II) from the aqueous solutions. J Solid Waste Technol Manag 37:128–140

  • Tan G, Xiao D (2009) Adsorption of cadmium ion from aqueous solution by ground wheat stems. J Hazard Mater 164:1359–1363

    CAS  Google Scholar 

  • Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356

    Google Scholar 

  • Toth J (1971) State equations of the solid gas interface layer. Acta Chem Acad Hung 69:311–317

    CAS  Google Scholar 

  • Tsekova T, Todopova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegerad 64:447–451

    CAS  Google Scholar 

  • Tunali S, Cabuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 115:203–211

    CAS  Google Scholar 

  • Tuzun I, Bayramoglu G, Alcin YE, Basaran G, Celik G, Arica MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    CAS  Google Scholar 

  • Uluozlu OD, Sari A, Tuzen M, Soylak M (2008) Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour Technol 99:2972–2980

    CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2005) Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem 40:3267–3275

    CAS  Google Scholar 

  • Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409:384–395

    CAS  Google Scholar 

  • Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99:3935–3948

    CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Google Scholar 

  • Wang J, Chen C (2010) Research advances in heavy metal removal by biosorption. Acta Sci Circumst 30:673–701

    Google Scholar 

  • Wang XS, Li ZZ, Sun C (2008) Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: marine macroalgae and agricultural by products. J Hazard Mater 153:1176–1184

    CAS  Google Scholar 

  • Wang XS, Li F, He YW, Miao HH (2010) Hg(II) removal from aqueous solutions by Bacillus subtilis biomass. Clean 38:44–48

    Google Scholar 

  • Waseem S, Din MI, Nasir S, Rasool A (2012) Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II) and Cd(II) ions from aqueous solutions. Arab J Chem. doi:10.1016/j.arabjc.2012.1003.1020

    Google Scholar 

  • Witek-Krowaik A, Harikishore K, Reddy D (2013) Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste: unusual isotherms and insights of binding mechanism. Bioresour Technol 127:350–357

    Google Scholar 

  • Xiong Y, Xu J, Shan W, Lou Z, Fang D, Zang S, Han G (2013) A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour Technol 127:464–472

    CAS  Google Scholar 

  • Yahaya YA, Don MM, Bhatia S (2009) Biosorption of Copper(II) on to immobilized cells of Pycnoporus sanguineus from aqueous solution: equilibrium and kinetic studies. J Hazard Mater 161:189–195

    CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    CAS  Google Scholar 

  • Yuvaraja G, Krishnaiah N, Subbaiah MV, Krishnaiah A (2014) Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloid Surf B: Biointerfaces 114:75–81

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Salman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, M., Athar, M. & Farooq, U. Biosorption of heavy metals from aqueous solutions using indigenous and modified lignocellulosic materials. Rev Environ Sci Biotechnol 14, 211–228 (2015). https://doi.org/10.1007/s11157-015-9362-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9362-x

Keywords

Navigation