Skip to main content
Log in

Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The biosorption characteristics of lanthanum and cerium ions from aqueous solution by grapefruit peel have been investigated as a function of pH, biosorbent dosage, contact time, and temperature. The pH was found to be significantly affecting the biosorption performance: pH 5.0 was found to be an optimum pH for favorable biosorption of lanthanum and cerium ions. The experimental isotherm data were analyzed using Langmuir and Freundlich equations. The Langmuir model fits the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for La(III) and Ce(III) ions were 171.20 and 159.30 mg/g, respectively. Pseudo-first-order and pseudo-second-order models were used to represent the kinetics of the process. The results show that the pseudo-second-order model is the one that best describes the kinetics of the biosorption of both metal ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) show that the biosorption process is feasible, spontaneous, and endothermic at 20–50 °C. FTIR analysis demonstrates that carboxyl and hydroxyl groups are involved in the biosorption of the metal ions. This study shows that grapefruit peel has the potential of application as an efficient biosorbent for the removal of lanthanide elements from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C e :

Metal concentration at equilibrium (mg/L)

C f :

Final metal ion concentration (mg/L)

C o :

Initial metal concentration (mg/L)

ΔG°:

Gibbs free energy change (J/mol)

ΔH°:

Enthalpy change (J/mol)

k 1 :

Pseudo-first-order rate constant of the sorption (1/min)

k 2 :

Pseudo-second-order rate constant of the sorption [g/(mg min−1)]

K D :

Distribution coefficient (mL/g)

K L :

Langmuir model constant (L/mg)

K F :

Freundlich model constant

M :

Mass of the biosorbent (g)

n :

Freundlich sorption intensity

q e :

Amount of adsorbed metal per weight of biosorbent at equilibrium (mg/g)

q m :

Maximum metal sorption capacity from Langmuir model (mg/g)

q t :

Amount of adsorbed metal per weight of biosorbent at time t (mg/g)

R :

Universal gas constant (8.314 J/mol K)

R L :

Separation factor (−)

ΔS°:

Entropy change (J/mol K)

t :

Time (min)

T :

Absolute temperature (K)

V :

Volume of metal solution (L)

References

  1. K. Kondo, E. Kamio, Desalination 144, 249 (2002)

    Article  CAS  Google Scholar 

  2. T.R. Tao, V.M.N. Biju, Crit. Rev. Anal. Chem. 30, 179 (2000)

    Article  Google Scholar 

  3. M.C. Palmieri, B. Volesky, O. Garcia, Hydrometallurgy 67, 31 (2002)

    Article  CAS  Google Scholar 

  4. L. Jelinek, W. Yuezhou, M. Kumagai, J. Rare Earths 24, 385 (2006)

    Article  Google Scholar 

  5. L. Zuo, S. Yu, H. Zhou, J. Jiang, X. Tian, J. Radioanal. Nucl. Chem. 288, 579 (2011)

    Article  CAS  Google Scholar 

  6. F. Fu, Q. Wang, J. Environ. Manage. 92, 407 (2011)

    Article  CAS  Google Scholar 

  7. B. Volesky, Hydrometallurgy 59, 203 (2001)

    Article  CAS  Google Scholar 

  8. A.I. Zouboulis, M.X. Loukidou, K.A. Matis, Process Biochem. 39, 909 (2004)

    Article  CAS  Google Scholar 

  9. D.A. Wase, Biosorbents for metal ions (CRC Press, London, 1997), pp. 11–88

    Google Scholar 

  10. P. Ahuja, R. Gupta, R.K. Saxena, Process Biochem. 34, 77 (1999)

    Article  CAS  Google Scholar 

  11. A. Sarı, M. Tuzen, J. Hazard. Mater. 157, 448 (2008)

    Article  Google Scholar 

  12. S. Karthikeyan, R. Balasubramanian, Biores. Technol. 98, 452 (2007)

    Article  CAS  Google Scholar 

  13. K. Vijayaraghavan, Y.S. Yun, Biotechnol. Adv. 26, 266 (2008)

    Article  CAS  Google Scholar 

  14. M.R. Wilkins, W. Widmer, K. Grohmann, R.G. Cameron, Bioresour. Technol. 98, 1596 (2007)

    Article  CAS  Google Scholar 

  15. S.V. Ting, E.J. Deszyck, J. Food Sci. 26, 146 (1961)

    Article  CAS  Google Scholar 

  16. R.S. Blackbum, Environ. Sci. Technol. 38, 4905 (2004)

    Article  Google Scholar 

  17. N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, J. Hazard. Mater. 185, 49 (2011)

    Article  CAS  Google Scholar 

  18. J. Buffle, Complexation Reactions in Aquatic Systems. Analytical Approach (Fllis Horwood, Ltd., Chichester, 1988)

    Google Scholar 

  19. D. Kratochvil, B. Volesky, Trends Biotechnol. 16, 291 (1998)

    Article  CAS  Google Scholar 

  20. S.I. Zafar, M. Bismam, A. Saeed, M. Iqbal, Fresen. Environ. Bull. 17, 2109 (2008)

    CAS  Google Scholar 

  21. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  22. H.M.F. Freundlich, Z. für Phys. Chem. 57A, 385 (1906)

    Google Scholar 

  23. C. Kütahyali, Ş. Sert, B. Çetinkaya, S. Inan, M. Eral, Sep. Sci. Technol. 45, 1456 (2010)

    Article  Google Scholar 

  24. K. Vijayaraghavan, M. Sathishkumar, R. Balasubramanian, Ind. Eng. Chem. Res. 49, 4405 (2010)

    Article  CAS  Google Scholar 

  25. C. Qing, J. Rare Earths 28, 125 (2010)

    Article  Google Scholar 

  26. Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, M. Eral, Hydrometallurgy 90, 13 (2008)

    Article  CAS  Google Scholar 

  27. R.C. Oliveira Jr, O. Garcia, Adv. Mater. Res. 71, 605 (2009)

    Article  Google Scholar 

  28. V. Diniz, B. Volesky, Water Res. 39, 239 (2005)

    Article  CAS  Google Scholar 

  29. D. Wu, J. Zhao, L. Zhang, Q. Wu, Y. Yang, Hydrometallurgy 101, 76 (2010)

    Article  CAS  Google Scholar 

  30. D. Wu, L. Zhang, L. Wang, B. Zhu, L. Fan, J. Chem. Technol. Biotechnol. 86, 354 (2010)

    Google Scholar 

  31. N.S. Awwad, H.M.H. Gad, M.I. Ahmad, H.F. Aly, Colloids Surf. B Biointerfaces. 81, 593 (2010)

    Article  CAS  Google Scholar 

  32. C. Kütahyali, Ş. Sert, B. Çetinkaya, E. Yalçıntaş, M.B. Acar, Wood Sci. Technol. 721, 46 (2011)

    Google Scholar 

  33. A. Sarı, M. Tuzen, Chem. Eng. J. 158, 200 (2010)

    Article  Google Scholar 

  34. S. Lagergren, K. Sven, Vetenskapsakademiens. Handl. 24, 1 (1989)

    Google Scholar 

  35. Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)

    Article  CAS  Google Scholar 

  36. M. Minamisawa, H. Minamisawa, S. Yoshida, N. Taki, J. Agr. Food Chem. 52, 5606 (2004)

    Article  CAS  Google Scholar 

  37. R. Gnanasambandam, A. Ptotor, Food Chem. 68, 327 (2000)

    Article  CAS  Google Scholar 

  38. F.T. Li, H. Yang, Y. Zhao, R. Xu, Chin. Chem. Lett. 18, 325 (2007)

    Article  CAS  Google Scholar 

  39. N.V. Farinella, G.D. Matos, M.A.Z. Arruda, Bioresour. Technol. 98, 1940 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Torab-Mostaedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A. et al. Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies. Res Chem Intermed 41, 559–573 (2015). https://doi.org/10.1007/s11164-013-1210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1210-4

Keywords

Navigation