Skip to main content
Log in

Adsorption performance of continuous fixed bed column for the removal of methylene blue (MB) dye using Eucalyptus sheathiana bark biomass

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, the adsorptive effectiveness of sustainable and cost-effective eucalyptus bark biomass in the removal of methylene blue (MB) dye from its aqueous solution has been tested using a packed bed up-flow column experiment. A series of column experiments using raw eucalyptus bark was performed to determine the breakthrough curves with varying inlet MB dye flow rate (10–15 mL min−1), initial MB dye concentration (50–100 mg L−1) and adsorbent bed height (10–15 cm). High bed height, low flow rate and high initial dye concentration were found to be the better conditions for maximum dye adsorption. To predict the breakthrough curves and to determine the characteristic parameters of the column dynamics for industrial applications and for process design, Thomas model, Yoon–Nelson model and bed depth service time model were applied to experimental breakthrough data. All models were found suitable for describing the dynamic behaviour of the column, with respect to MB flow rate, initial dye concentration and adsorbent bed height. The findings revealed that eucalyptus bark biomass has a high adsorption potential for the removal of MB dye from aqueous solutions in a column system, and that it could be used to treat dye-containing effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Cross sectional area of bed in column (cm2)

A 1 :

Used bed area (cm2)

A 2 :

Unused bed area (cm2)

a :

Slope (N o/C o U)

b :

Intercept (1/K o C o) ln[(C o /C t )−1)]

C :

Effluent MB concentration (mg/L)

C t :

Outlet pollutant concentration (mg/L)

C o :

Inlet pollutant concentration (mg/L)

H :

Height of bed in column (cm)

H B :

Used bed length up to break point (cm)

H T :

Bed height of column (cm)

H UNB :

Unused bed length (cm)

K o :

Rate constant in BDST model (L/mg min)

K T :

Thomas rate constant (mL/mg min)

K YN :

Yoon and Nelson rate constant (min−1)

MTZ:

Mass transfer zone (cm)

m :

Amount of adsorbent in the column (g)

m p :

Mass of pine cone (g)

m total :

Total amount of methylene blue dye sent to column (g)

N o :

Adsorption capacity (mg/L)

Q :

Volumetric flow rate (mL/min)

q total :

Total adsorbed methylene blue dye quantity (g)

q o :

Equilibrium adsorbate uptake (mg/g)

t :

Breakthrough (sampling) time (min)

t t :

Total time (min)

t total :

Total flow time (min)

t b :

Usable capacity of bed up to the breakthrough point time (min)

t u :

Time equivalent to usable capacity (min)

U :

Influent linear velocity (cm/min)

V :

Effluent volume (ml)

V eff :

Total effluent volume (mL)

τ :

Time required for 50 % adsorbate breakthrough (min)

References

  1. E.N. El Qada, S.J. Allen, G.M. Walker, Chem. Eng. J. 135, 174 (2008)

    Article  Google Scholar 

  2. G. Crini, Bioresour. Technol. 97, 1061 (2006)

    Article  CAS  Google Scholar 

  3. S.J. Allen, G. Mckay, J.F. Porter, J. Colloid Interface Sci. 280, 322 (2004)

    Article  CAS  Google Scholar 

  4. R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Liu, J. Hazard. Mater. 141, 713 (2007)

    Article  CAS  Google Scholar 

  5. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)

    Article  CAS  Google Scholar 

  6. R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, Y. Sun, Dyes Pigments 64, 187 (2005)

    Article  CAS  Google Scholar 

  7. M.T. Yagub, T.K. Sen, S. Afroze, H. Ang, Adv. Colloid Interface Sci. 209, 172 (2014)

    Article  CAS  Google Scholar 

  8. Z. Aksu, Process Biochem. 40, 997 (2005)

    Article  CAS  Google Scholar 

  9. G.M. Walker, L.R. Weatherley, Water Res. 31, 2093 (1997)

    Article  CAS  Google Scholar 

  10. V. Vadivelan, K.V. Kumar, J. Colloid Interface Sci. 286, 90 (2005)

    Article  CAS  Google Scholar 

  11. R. Han, Y. Wang, P. Han, J. Shi, J. Yang, Y. Lu, J. Hazard. Mater. 137, 550 (2006)

    Article  CAS  Google Scholar 

  12. V. Garg, M. Amita, R. Kumar, R. Gupta, Dyes Pigments 63, 243 (2004)

    Article  CAS  Google Scholar 

  13. T.K. Sen, S. Afroze, H. Ang, Water Air Soil Pollut. 218, 499 (2011)

    Article  CAS  Google Scholar 

  14. L. Kong, L. Gong, J. Wang, Desalin. Water Treat. 53, 2489 (2015)

    Article  CAS  Google Scholar 

  15. M.T. Yagub, T.K. Sen, H. Ang, Water Air Soil Pollut. 223, 5267 (2012)

    Article  CAS  Google Scholar 

  16. L. Zhou, J. Huang, B. He, F. Zhang, H. Li, Carbohydr. Polym. 101, 574 (2014)

    Article  CAS  Google Scholar 

  17. Y. Zhao, Y. Xia, H. Yang, Y. Wang, M. Zhao, Desalin. Water Treat. 52, 199 (2014)

    Article  CAS  Google Scholar 

  18. M.S. Kini, M. Saidutta, V.R. Murty, Int. J. Chem. Eng. 2014, 1–13 (2014)

  19. G. Akkaya, F. Güzel, Chem. Eng. Commun. 201, 557 (2014)

    Article  CAS  Google Scholar 

  20. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater. 177, 70 (2010)

    Article  CAS  Google Scholar 

  21. T. Chuah, A. Jumasiah, I. Azni, S. Katayon, S. Thomas Choong, Desalination 175, 305 (2005)

    Article  CAS  Google Scholar 

  22. S. Afroze, T.K. Sen, M. Ang, H. Nishioka, Desalin. Water Treat. 2015, 1 (2015)

    Article  Google Scholar 

  23. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Desalin. Water Treat. 2014, 1 (2014)

    Google Scholar 

  24. I. Mall, V. Srivastava, G. Kumar, I. Mishra, Colloids Surf. A Physicochem. Eng. Asp. 278, 175 (2006)

    Article  CAS  Google Scholar 

  25. S. Ghorai, K. Pant, Sep. Purif. Technol. 42, 265 (2005)

    Article  CAS  Google Scholar 

  26. S. Baral, N. Das, T. Ramulu, S. Sahoo, S. Das, G.R. Chaudhury, J. Hazard. Mater. 161, 1427 (2009)

    Article  CAS  Google Scholar 

  27. M.L. Bao, O. Griffini, D. Santianni, K. Barbieri, D. Burrini, F. Pantani, Water Res. 33, 2959 (1999)

    Article  CAS  Google Scholar 

  28. S.D. Faust, O.M. Aly, Adsorption Processes for Water Treatment (Elsevier, Amsterdam, 2013)

    Google Scholar 

  29. G. Walker, L. Weatherley, Sep. Sci. Technol. 35, 1329 (2000)

    Article  CAS  Google Scholar 

  30. Y. Al-Degs, M. Khraisheh, S. Allen, M. Ahmad, J. Hazard. Mater. 165, 944 (2009)

    Article  CAS  Google Scholar 

  31. J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M. Chaparro-Mercado, B. Bilyeu, Chem. Eng. J. 228, 21 (2013)

    Article  CAS  Google Scholar 

  32. S.T. Ghomshe, S. Mousavi, M. Soltanieh, A.S. Kordi, Sci. Res. Essays 6, 3553 (2011)

    Google Scholar 

  33. Z. Aksu, F. Gönen, Process Biochem. 39, 599 (2004)

    Article  CAS  Google Scholar 

  34. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, J. Hazard. Mater. 125, 211 (2005)

    Article  CAS  Google Scholar 

  35. R. Han, J. Zhang, W. Zou, H. Xiao, J. Shi, H. Liu, J. Hazard. Mater. 133, 262 (2006)

    Article  CAS  Google Scholar 

  36. R. Han, W. Zou, H. Li, Y. Li, J. Shi, J. Hazard. Mater. 137, 934 (2006)

    Article  CAS  Google Scholar 

  37. I. Mobasherpour, E. Salahi, A. Asjodi, Soil Water 4, 5 (2014)

    Google Scholar 

  38. H.C. Thomas, J. Am. Chem. Soc. 66, 1664 (1944)

    Article  CAS  Google Scholar 

  39. A. Ahmad, B. Hameed, J. Hazard. Mater. 175, 298 (2010)

    Article  CAS  Google Scholar 

  40. C.M. Futalan, C.-C. Kan, M.L. Dalida, C. Pascua, M.-W. Wan, Carbohydr. Polym. 83, 697 (2011)

    Article  CAS  Google Scholar 

  41. S. Hasan, D. Ranjan, M. Talat, J. Hazard. Mater. 181, 1134 (2010)

    Article  CAS  Google Scholar 

  42. Z. Chowdhury, S. Zain, A. Rashid, R. Rafique, K. Khalid, J. Chem. 2013, 1–8 (2012)

  43. Y.H. Yoon, J.H. Nelson, Am. Ind. Hyg. Assoc. J. 45, 509 (1984)

    Article  CAS  Google Scholar 

  44. R. Hutchins, Chem. Eng. 80, 133 (1973)

    CAS  Google Scholar 

  45. S. Sadaf, H.N. Bhatti, J. Taiwan Inst. Chem. E 45, 541 (2014)

    Article  CAS  Google Scholar 

  46. L.S. Oliveira, A.S. Franca, T.M. Alves, S.D. Rocha, J. Hazard. Mater. 155, 507 (2008)

    Article  CAS  Google Scholar 

  47. D.C. Ko, J.F. Porter, G. McKay, Chem. Eng. Sci. 55, 5819 (2000)

    Article  CAS  Google Scholar 

  48. C. Djelloul, O. Hamdaoui, Desalin. Water Treat. 2014, 1 (2014)

    Article  Google Scholar 

  49. L. Markovska, V. Meshko, V. Noveski, Korean J. Chem. Eng. 18, 190 (2001)

    Article  CAS  Google Scholar 

  50. M.S. Reddy, V. Nirmala, Arab. J. Chem. (2014). doi:10.1016/j.arabjc.2014.08.026

  51. K.S. Bharathi, S.P.T. Ramesh, Appl. Water Sci. 3, 673 (2013)

    Article  CAS  Google Scholar 

  52. M. Hadi, M.R. Samarghandi, G. McKay, Water Air Soil Pollut. 218, 197 (2011)

    Article  CAS  Google Scholar 

  53. T. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, J. Hazard. Mater. 125, 121 (2005)

    Article  CAS  Google Scholar 

  54. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Desalination 265, 159 (2011)

    Article  CAS  Google Scholar 

  55. O. Hamdaoui, J. Hazard. Mater. 138, 293 (2006)

    Article  CAS  Google Scholar 

  56. P.D. Saha, S. Chowdhury, M. Mondal, K. Sinha, Sep. Sci. Technol. 47, 112 (2012)

    Article  Google Scholar 

  57. S. Sadaf, H.N. Bhatti, Clean Technol. Environ. Policy 16, 527 (2014)

    Article  CAS  Google Scholar 

  58. W. Li, Q. Yue, P. Tu, Z. Ma, B. Gao, J. Li, X. Xu, Chem. Eng. J. 178, 197 (2011)

    Article  CAS  Google Scholar 

  59. P.D. Saha, S. Chakraborty, S. Chowdhury, Colloids Surf. B Biointerfaces 92, 262 (2012)

    Article  Google Scholar 

  60. I. Tan, A. Ahmad, B. Hameed, Desalination 225, 13 (2008)

    Article  CAS  Google Scholar 

  61. D.O. Cooney, Adsorption Design for Wastewater Treatment (CRC Press, Boca Raton, 1998)

    Google Scholar 

Download references

Acknowledgments

The Authors would like to thank the Chemical Engineering Department of Curtin University-Perth for financial support, and Chemical Engineering laboratory technicians and Centre of Materials Research (CMR) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afroze, S., Sen, T.K. & Ang, H.M. Adsorption performance of continuous fixed bed column for the removal of methylene blue (MB) dye using Eucalyptus sheathiana bark biomass. Res Chem Intermed 42, 2343–2364 (2016). https://doi.org/10.1007/s11164-015-2153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2153-8

Keywords

Navigation