Skip to main content
Log in

Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The nanoporous framework of a cyclodextrin nanosponge was used as catalyst for accelerating the one-pot, three-component reaction of dimedone, aldehyde, and phenols for synthesis of xanthene derivatives. Moreover, the nanocavities of cyclodextrin nanosponges were exploited for immobilization of heteropolyacids through the wet impregnation method. This catalyst exhibited superior catalytic performance compared to the bare cyclodextrin nanosponge. Despite the good catalytic activity, the leaching of the catalytic species did not allow efficient recovery and reusability. To circumvent this problem, the cyclodextrin nanosponge was amine-functionalized prior to heteropolyacid immobilization. The results proved that the amine functionalities had an effective role in preserving the catalytic species and improving the reusability through decreasing the leaching time. This catalyst was used for synthesis of a variety of xanthenes in aqueous media. The catalytic amount of catalyst afforded the desired product in excellent yields and with a relatively short reaction time. The results suggested cyclodextrin nanosponge-based catalysts as potential candidates for promoting chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3

Similar content being viewed by others

References

  1. G. Tejashri, B. Amrita, J. Darshana, Acta Pharm. 63, 335 (2013)

    Article  CAS  Google Scholar 

  2. F. Trotta, in Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications, ed. by E. Bilensoy (Wiley, Hoboken, 2011), p. 323

    Chapter  Google Scholar 

  3. S. Anandam, S. Selvamuthukumar, J. Mater. Sci. 49, 8140 (2014)

    Article  CAS  Google Scholar 

  4. P. Shende, K. Deshmukh, F. Trotta, F. Caldera, Int. J. Pharm. 456, 95 (2013)

    Article  CAS  Google Scholar 

  5. S. Torne, S. Darandale, P. Vavia, F. Trotta, R. Cavalli, Pharm. Dev. Technol. 18, 619 (2013)

    Article  CAS  Google Scholar 

  6. M. Shringirishi, S.K. Prajapati, A. Mahor, S. Alok, P. Yadav, A. Verma, Asian. Pac. J. Trop. Dis. 4, S519 (2014)

    Article  CAS  Google Scholar 

  7. M. Arkas, R. Allabashi, D. Tsiourvas, E.-M. Mattausch, R. Perfle, Environ. Sci. Technol. 40, 2771 (2006)

    Article  CAS  Google Scholar 

  8. G. Cravotto, E.C. Calcio Gaudino, S. Tagliapietra, D. Carnaroglio, A. Procopio, Green Process. Synth. 1, 269 (2012)

    CAS  Google Scholar 

  9. P. Cintas, G. Cravotto, E.C. Gaudino, L. Orio, L. Boffa, Catal. Sci. Technol. 2, 85 (2012)

    Article  CAS  Google Scholar 

  10. G. Di Nardo, C. Roggero, S. Campolongo, F. Valetti, F. Trotta, G. Gilardi, Dalton Trans. 7, 6507 (2009)

  11. B. Boscolo, F. Trotta, E. Ghibaudi, J. Mol. Catal. B Enzym. 62, 155 (2010)

    Article  CAS  Google Scholar 

  12. A. Gharib, L. Vojdani Fard, N.N. Pesyan, M. Roshani, Chem. J. 1, 58 (2015)

    Google Scholar 

  13. J.M. Khurana, D. Magoo, K. Aggarwal, N. Aggarwal, R. Kumar, C. Srivastava, Eur. J. Med. Chem. 58, 470 (2012)

    Article  CAS  Google Scholar 

  14. J.M. Jamison, K. Krabill, A. Hatwalkar, Cell Biol. Int. Rep. 14, 1075 (1990)

    Article  CAS  Google Scholar 

  15. R.M. Ion, D. Frackowiak, K. Wiktorowicz, Acta Biochim. Pol. 45, 833 (1998)

    CAS  Google Scholar 

  16. O. Evangelinou, A.G. Hatzidimitriou, E. Velalib, A.A. Pantazaki, N. Voulgarakis, P. Aslanidis, Polyhedron 72, 122 (2014)

    Article  CAS  Google Scholar 

  17. O. Sirkecioglu, N. Talinli, A. Akar, J. Chem. Res. 502 (1995)

  18. P. Bansal, G.R. Chaudhary, N. Kaur, S.K. Mehta, RSC Adv. 5, 8205 (2015)

    Article  CAS  Google Scholar 

  19. G.R. Chaudhary, P. Bansal, N. Kaur, S.K. Mehta, RSC Adv. 4, 49462 (2014)

    Article  CAS  Google Scholar 

  20. M.M. Heravi, H. Alinejhad, K. Bakhtiari, M. Saeedi, H.A. Oskooie, F.F. Bamoharram, Bull. Chem. Soc. Ethiop. 25, 399 (2011)

    CAS  Google Scholar 

  21. K. Rad-Moghadam, S.K. Azimi, J. Mol. Catal. A: Chem. 363–364, 465 (2012)

    Article  Google Scholar 

  22. N.G. Khaligh, Ultrason. Sonochem. 19, 736 (2012)

    Article  CAS  Google Scholar 

  23. M.M. Heravi, S. Sadjadi, J. Iran. Chem. Soc. 6, 1 (2009)

    Article  CAS  Google Scholar 

  24. E. Rafiee, F. Mirnezami, J. Mol. Liq. 199, 156 (2014)

    Article  CAS  Google Scholar 

  25. K. Pamin, M. Pronczuk, S. Basąg, W. Kubiak, Z. Sojka, J. Połtowicz, Inorg. Chem. Commun. 59, 13 (2015)

    Article  CAS  Google Scholar 

  26. S. Tsubaki, K. Oono, T. Ueda, A. Onda, K. Yanagisawa, T. Mitani, J.-I. Azuma, Bioresour. Technol. 144, 67 (2013)

    Article  CAS  Google Scholar 

  27. A. Srivani, P.S. Sai Prasad, N. Lingaiah, Catal. Lett. 142, 389 (2012)

    Article  CAS  Google Scholar 

  28. S. Swaminathan, L. Pastero, L. Serpe, F. Trotta, P. Vavia, D. Aquilano, M. Trotta, G.P. Zara, R. Cavalli, Eur. J. Pharm. Biopharm. 74, 193 (2010)

    Article  CAS  Google Scholar 

  29. R. Cavalli, F. Trotta, W. Tumiatti, J. Incl. Phenom. 56, 209 (2006)

    Article  CAS  Google Scholar 

  30. F. Trotta, R. Cavalli, K. Martina, M. Biasizzo, J. Vitillo, S. Bordiga, P. Vavia, K. Ansari, J. Incl. Phenom. Macrocycl. Chem. 71, 189 (2011)

    Article  CAS  Google Scholar 

  31. G. Mohammadi Ziarani, A.-R. Badiei, M. Azizi, Sci. Iran. 18, 453 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate partial financial support from Iran Polymer and Petrochemical Institute and Alzahra University. MMH is also thankful to INSF for financial support given under cover of given individual grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samahe Sadjadi or Majid M. Heravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadjadi, S., Heravi, M.M. & Daraie, M. Cyclodextrin nanosponges: a potential catalyst and catalyst support for synthesis of xanthenes. Res Chem Intermed 43, 843–857 (2017). https://doi.org/10.1007/s11164-016-2668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2668-7

Keywords

Navigation