Skip to main content
Log in

Synthesis of Fe- or Ag-doped TiO2–MWCNT nanocomposite thin films and their visible-light-induced catalysis of dye degradation and antibacterial activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Thin films of TiO2, TiO2-multiwalled carbon nanotubes (TiO2–MWCNT), Fe-doped TiO2–MWCNT (Fe–TiO2–MWCNT), and Ag-doped TiO2–MWCNT (Ag–TiO2–MWCNT) supported on glass substrates were successfully prepared by sol–gel drop coating method. MWCNTs were treated by H2SO4 and HNO3 to oxidize graphitic carbon. The composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, and ultraviolet–visible (UV-Vis) absorption spectroscopy to confirm their structure and optical properties. XRD patterns of all prepared films exhibited (101), (004), (200), (105), (211), (204), (116), (220), (215), and (224) planes of anatase-phase TiO2. A pronounced broad peak at ~3400 cm−1 in the FTIR spectrum of the MWCNT confirmed oxidation of some carbon atoms on the surface of MWCNTs by HNO3 and H2SO4. The photocatalytic and antibacterial activities of the prepared materials were tested under visible-light irradiation based on degradation of methylene blue (MB) dye in aqueous solution and reduction in the viable count of Escherichia coli, respectively. Fe or Ag was doped into the TiO2-MWCNT composites, lowering the bandgap and thereby enabling enhanced photocatalytic activity in the visible-light region. Based on the MB photodegradation results, the photocatalytic efficiency of the Fe–TiO2–MWCNT and Ag–TiO2–MWCNT composites could be due to the following mechanism: (1) adsorption and photoinduced electron absorption by MWCNT, and (2) electron trapping by Fe or Ag within the TiO2 matrix, in addition to the usual photocatalytic activity of TiO2. Moreover, as-synthesized Ag–TiO2–MWCNT composite films showed outstanding antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Liu, X. Chen, J. Zhang, J.W. Schwank, Catal. Today 225, 34 (2014)

    Article  CAS  Google Scholar 

  2. P. Van Viet, B.T. Phan, D. Mott, S. Maenosono, T.T. Sang, C.M. Thi, L. Van Hieu, J. Photochem. Photobiol. A Chem. 352, 106 (2018)

    Article  CAS  Google Scholar 

  3. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Appl. Catal. B Environ. 187, 47 (2016)

    Article  CAS  Google Scholar 

  4. Z. Luo, A.S. Poyraz, C.H. Kuo, R. Miao, Y. Meng, S.Y. Chen, T. Jiang, C. Wenos, S.L. Suib, Chem. Mater. 27, 6 (2015)

    Article  CAS  Google Scholar 

  5. M.A. Ahmed, E.E. El-Katori, Z.H. Gharni, J. Alloys Compd. 553, 19 (2013)

    Article  CAS  Google Scholar 

  6. C.M. Lee, P. Palaniandy, I. Dahlan, Environ. Earth Sci. 76, 611 (2017)

    Article  Google Scholar 

  7. M.N. Uddin, S.U.A. Shibly, R. Ovali, S. Islam, M.M.R. Mazumder, M.S. Islam, M.J. Uddin, O. Gulseren, E. Bengu, J. Photochem. Photobiol. A Chem. 254, 25 (2013)

    Article  CAS  Google Scholar 

  8. M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Nanoscale Res. Lett. 10, 54 (2015)

    Article  Google Scholar 

  9. W. Mekprasart, T. Khumtong, J. Rattanarak, W. Techitdheera, W. Pecharapa, Energy Proc. 34, 746 (2013)

    Article  CAS  Google Scholar 

  10. S. Anandan, T. Narasinga Rao, M. Sathish, D. Rangappa, I. Honma, M. Miyauchi, ACS Appl. Mater. Interfaces 5, 207 (2013)

    Article  CAS  Google Scholar 

  11. B. Choudhury, A. Choudhury, J. Lumin. 132, 178 (2012)

    Article  CAS  Google Scholar 

  12. Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, J. Wang, J. Mater. Chem. A 2, 824 (2014)

    Article  CAS  Google Scholar 

  13. K. Gopinath, S. Kumaraguru, K. Bhakyaraj, S. Thirumal, A. Arumugam, Superlattices Microstruct. 92, 100 (2016)

    Article  CAS  Google Scholar 

  14. B. Gao, T. Wang, X. Fan, H. Gong, H. Guo, W. Xia, Y. Feng, X. Huang, J. He, Inorg. Chem. Front. 4, 898 (2017)

    Article  CAS  Google Scholar 

  15. P. Sun, L. Liu, S.-C. Cui, J.-G. Liu, Catal. Lett. 144, 2107 (2014)

    Article  CAS  Google Scholar 

  16. S.M.H. AL-Jawad, A.A. Taha, M.M. Salim, Opt. Int. J. Light Electron. Opt. 142, 42 (2017)

    Article  CAS  Google Scholar 

  17. O. Akhavan, R. Azimirad, S. Safa, M.M. Larijani, J. Mater. Chem. 20, 7386 (2010)

    Article  CAS  Google Scholar 

  18. N. Abbas, G.N. Shao, M.S. Haider, S.M. Imran, S.S. Park, S.-J. Jeon, H.T. Kim, Mater. Sci. Eng. C 68, 780 (2016)

    Article  CAS  Google Scholar 

  19. B. Tryba, M. Piszcz, B. Grzmil, A. Pattek-Janczyk, A.W. Morawski, J. Hazard. Mater. 162, 111 (2009)

    Article  CAS  Google Scholar 

  20. Y.J. An, W.S. Chung, J. Chang, H.C. Lee, Y.R. Cho, Mater. Lett. 62, 4277 (2008)

    Article  CAS  Google Scholar 

  21. K.M. Rahulan, S. Ganesan, P. Aruna, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 25012 (2011)

    Article  Google Scholar 

  22. V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, J. Photochem. Photobiol. A Chem. 148, 233 (2002)

    Article  CAS  Google Scholar 

  23. F. Zhang, M. Chen, W. Oh, New Carbon Mater. 25, 348 (2010)

    Article  CAS  Google Scholar 

  24. S. Wang, S. Zhou, J. Hazard. Mater. 185, 77 (2011)

    Article  CAS  Google Scholar 

  25. M.J. Uddin, M.M. Alam, M.A. Islam, S.R. Snigda, S. Das, M.M. Rahman, M.N. Uddin, C.A. Morris, R.D. Gonzalez, U. Diebold, T.J. Dickens, O.I. Okoli, Int. Nano Lett. 3, 16 (2013)

    Article  Google Scholar 

  26. M.N. Uddin, M.S. Islam, M.M.R. Mazumder, M.A. Hossain, M. Elias, I.A. Siddiquey, M.A.B.H. Susan, D.K. Saha, M.M. Rahman, A.M. Asiri, S. Hayami, J. Incl. Phenom. Macrocycl. Chem. 82, 229 (2015)

    Article  CAS  Google Scholar 

  27. Y. Xie, C. Yuan, Appl. Catal. B Environ. 46, 251 (2003)

    Article  CAS  Google Scholar 

  28. A.V. Vinogradov, A.V. Agafonov, V.V. Vinogradov, O.I. Davydova, Mendeleev Commun. 22, 27 (2012)

    Article  CAS  Google Scholar 

  29. L.M. Santos, W.A. Machado, M.D. Franca, K.A. Borges, R.M. Paniago, A.O.T. Patrocinio, A.E.H. Machado, RSC Adv. 5, 103752 (2015)

    Article  CAS  Google Scholar 

  30. N. Nasralla, M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Šiller, Sci. Iran. 20, 1018 (2013)

    CAS  Google Scholar 

  31. P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Appl. Environ. Microbiol. 65, 4094 (1999)

    CAS  Google Scholar 

  32. V. Sambhy, M.M. MacBride, B.R. Peterson, A. Sen, J. Am. Chem. Soc. 128, 9798 (2006)

    Article  CAS  Google Scholar 

  33. M. Chen, F. Zhang, W. Oh, New Carbon Mater. 24, 159 (2009)

    Article  CAS  Google Scholar 

  34. N. Sobana, M. Muruganadham, M. Swaminathan, J. Mol. Catal. A Chem. 258, 124 (2006)

    Article  CAS  Google Scholar 

  35. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Appl. Catal. B Environ. 91, 657 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Erman Bengu of Bilkent University, Turkey for supply of CNTs and are also grateful to the World Academy of Sciences (TWAS), Department of Chemistry, Shahjalal University of Science and Technology (SUST), University Research Center, SUST, University Grants Commission, Bangladesh, Ministry of Science and Technology, Bangladesh and Ministry of Education, Bangladesh for research grants to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Nizam Uddin.

Additional information

Md. Asjad Hossain and Md. Elias contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.A., Elias, M., Sarker, D.R. et al. Synthesis of Fe- or Ag-doped TiO2–MWCNT nanocomposite thin films and their visible-light-induced catalysis of dye degradation and antibacterial activity. Res Chem Intermed 44, 2667–2683 (2018). https://doi.org/10.1007/s11164-018-3253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3253-z

Keywords

Navigation