Skip to main content
Log in

Synthesis of Mn-doped TiO2 by novel route and photocatalytic mineralization/intermediate studies of organic pollutants

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The doping of TiO2 particles with various manganese (Mn) concentrations (0.25–1.0%) were synthesized using simple sol–gel and modified sol–gel technique. The characteristics of synthesized particles were found employing standard analytical techniques such as X-ray diffraction, scanning electron microscopy and UV–Vis spectroscopy. The photocatalytic activity of the synthesized particles was compared by investigating the mineralization of two selected organic pollutants like ketoprofen and chlorothalonil. The photocatalysts which were produced by improved sol–gel technique show the lower value of band gap energy and small size crystallite and, hence, exhibit better photocatalytic activity. The outcomes also designate that the concentration of dopant Mn 0.75% indicated the highest photocatalytic activity than other concentrations of dopant in the mineralization of both the compounds. The mineralization kinetics of both compounds was studied under various situations like reaction pH and catalyst dosage. The mineralization rates were highly affected by all the above parameters. An effort has also been performed to highlight the intermediates produced during the photooxidation of both the compounds using the GC–MS analysis method. Both compounds show the production of several intermediates. A possible pathway for the production of different products has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Jakimska, M. Śliwka-Kaszyńska, J. Reszczyńska, J. Namieśnik, A. Kot-Wasik, Anal. Bioanal. Chem. 406, 3667 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. Heberer, U. Dunnbier, C. Reilich, H.J. Stan, Fresen. Environ. Bull. 6, 438 (1997)

    CAS  Google Scholar 

  3. T. Kosjek, E. Heath, B. Kompare, Anal. Bioanal. Chem. 387, 1379 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 35, 402 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. N. Vieno, T. Tunkanen, L. Kronberg, Water Res. 41, 1001 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. F. Mendez-Arriaga, S. Esplugas, J. Gimenez, Water Res. 42, 585 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. P.K. Gupta, Toxicity of Fungicides Veterinary Toxicology (Third Edition) Basic and Clinical Principles, 2018, p. 569

  8. G.A. Peñuelas, D. Barcelo, J. Chromatogr. A 823, 81 (1998)

    Article  Google Scholar 

  9. N. Voulvoulis, M.D. Scrimshaw, J.N. Lester, Chemosphere 38, 3503 (1999)

    Article  CAS  Google Scholar 

  10. V.A. Sakkas, D.A. Lambropoulou, T.A. Albanis, Chemosphere 48, 939 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. K. Kummerer, in Pharmaceuticals in the environment, 2nd edn., ed. by K. Kummerer (Springer, Berlin, 2004), p. 3

    Chapter  Google Scholar 

  12. M. Neumann, R. Schulz, K. Schafer, W. Muller, W. Mannheller, M. Liess, Water Res. 36, 835 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. M.E. DeLorenzo, G.I. Scott, P.E. Ross, Environ. Toxicol. Chem. 20, 84 (2000)

    Article  Google Scholar 

  14. A.C. Affam, M. Chaudhuri, J. Environ. Manag. 130, 160 (2013)

    Article  CAS  Google Scholar 

  15. J. Zhou, Y. Zhang, X.S. Zhao, A.K. Ray, Ind. Eng. Chem. Res. 45, 3503 (2006)

    Article  CAS  Google Scholar 

  16. K. Umar, A. Aris, T. Parveen, J. Jaafar, Z.A. Majid, A.V.B. Reddy, J. Talib, Appl. Catal. A 505, 507 (2015)

    Article  CAS  Google Scholar 

  17. K. Umar, A. Aris, H. Ahmad, T. Parveen, J. Jaafar, Z.A. Majid, A.V.B. Reddy, J. Talib, J. Anal. Sci. Technol. 7, 29 (2016)

    Article  CAS  Google Scholar 

  18. S.E.M. Ghahfarokhi, E.M. Shobegar, J. Alloys Compd. 768, 65 (2018)

    Article  CAS  Google Scholar 

  19. M. Taheri, H. Abdizadeh, M.R. Golobostanfard, J. Alloys Compd. 725, 291 (2017)

    Article  CAS  Google Scholar 

  20. S. Gnanam, V. Rajendran, J. Alloys Compd. 735, 1854 (2018)

    Article  CAS  Google Scholar 

  21. N.A. Mir, M.M. Haque, A. Khan, K. Umar, M. Muneer, S. Vijayalakshmi, J. Adv. Oxid. Technol. 15, 252 (2012)

    Google Scholar 

  22. A.A. Dar, K. Umar, N.A. Mir, M.M. Haque, M. Muneer, C. Boxall, Res. Chem. Intermed. 37, 567 (2011)

    Article  CAS  Google Scholar 

  23. N.A. Mir, A. Khan, K. Umar, M. Muneer, Energy Environ. 2, 208 (2013)

    Google Scholar 

  24. K. Umar, M.M. Haque, M. Muneer, T. Harada, M. Matsumura, J. Alloys Compd. 578, 431 (2013)

    Article  CAS  Google Scholar 

  25. L.G. Devi, N. Murthy, Catal. Lett. 125, 320 (2008)

    Article  CAS  Google Scholar 

  26. T. Peng, D. Zhao, H. Song, C. Yan, J. Mol. Catal. A Chem. 238, 119 (2005)

    Article  CAS  Google Scholar 

  27. L.G. Devi, N. Kottam, S.G. Kumar, J. Phys. Chem. C 113, 15593 (2009)

    Article  CAS  Google Scholar 

  28. L.G. Devi, S.G. Kumar, B.N. Murthy, N. Kottam, Catal. Commun. 10, 794 (2009)

    Article  CAS  Google Scholar 

  29. Y.W. Wang, L. Zhang, S. Li, P. Jena, J. Phys. Chem. C 113, 9210 (2009)

    Article  CAS  Google Scholar 

  30. V. Stengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217 (2009)

    Article  CAS  Google Scholar 

  31. A.D. Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 106, 637 (2002)

    Article  CAS  Google Scholar 

  32. J. Augustynski, Structural Bonding (Springer, Berlin, 1988)

    Google Scholar 

  33. G.C. Martinez, J. Lydia, J.C. Sacaiano, Phys. Chem. Chem. Phys. 1, 3533 (1999)

    Article  Google Scholar 

  34. K. Umar, A.A. Dar, M.M. Haque, N.A. Mir, M. Muneer, Desalin. Water Treat. 46, 205 (2012)

    Article  CAS  Google Scholar 

  35. K. Umar, M.M. Haque, N.A. Mir, M. Muneer, J. Adv. Oxid. Technol. 16, 252 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the post doctoral financial support (USM/PPSK/FPD(BW) 1/06 (2018) and a research grant (304/PKIMIA/6316174) by School of Chemical Science, Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Umar or Mohamad Nasir Mohamad Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, K., Ibrahim, M.N.M., Ahmad, A. et al. Synthesis of Mn-doped TiO2 by novel route and photocatalytic mineralization/intermediate studies of organic pollutants. Res Chem Intermed 45, 2927–2945 (2019). https://doi.org/10.1007/s11164-019-03771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03771-x

Keywords

Navigation