Skip to main content
Log in

Catalytic comparison of various polar Zn(II)-Schiff base complexes and VO(II)-Schiff base complexes in (ep)oxidation processes of 1,2-cyclohexene and cyclohexane

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The reactivity of Zn2+ and VO2+ ions towards pyridinyl Schiff bases, in the absence or presence of a p-sodium sulfonate group (HPSNa and HPS, respectively), provided polar and less polar catalyst complexes, which were characterized by various measurements. Stability constants of Zn-complexes [Zn(PS)2 and Zn(PSNa)2], and VO-complexes [VO(PS)2 and VO(PSNa)2] were measured spectrophotometrically. A typical (ep)oxidation processes of 1,2-cyclohexene or cyclohexane using 30% aqueous H2O2 catalyzed by our synthesized catalyst system, were tested. VO-complexes were found to be more effective catalysts than Zn-chelates. The polarity of Zn- and VO-complexes, i.e. the presence of p-SO3Na, displayed an observable influence on their catalytic performance chemoselectively. The polar catalyst system, Zn(PSNa)2 and VO(PSNa)2, in polar solvents such as H2O, MeOH, acetonitrile and acetone exhibited higher catalytic activity towards the (ep)oxidation processes than the less polar catalysts, Zn(PS)2 and VO(PS)2. In a less polar solvent such as CHCl3, polar catalysts showed higher conversion, but low chemoselectively, whereas the less polar catalysts showed relatively higher conversion and chemoselectivity. Under solvent-free conditions, less polar complexes were found to be more efficient catalysts than the polar chelates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4

Similar content being viewed by others

References

  1. K.A.D.F. Castro, S. Silva, P.M.R. Pereira, M.M.Q. Simões, M. da Graça, P.M.S. Neves, J.A.S. Cavaleiro, F. Wypych, J.P.C. Tomé, S. Nakagaki, Inorg. Chem. 54, 4382 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. M. Hajrezaie, M. Paydar, C.Y. Looi, S.Z. Moghadamtousi, P. Hassandarvish, M.S. Salga, H. Karimian, K. Shams, M. Zahedifard, N.A. Majid, H.M. Ali, M.A. Abdulla, Sci. Rep. 5, 9097 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M.S.S. Adam, H. Elsawy, J. Photochem. Photobio. B 184, 34 (2018)

    Article  CAS  Google Scholar 

  4. S.-J. Peng, L.-B. Song, J.-H. Ning, Z.-L. Xiao, Synth. React. Inorg. Met.-Org. Chem. 40, 105 (2010)

    CAS  Google Scholar 

  5. W. Al Zoubi, N. Al Mohanna, Spectrochim Acta A 132, 854 (2014)

    Article  CAS  Google Scholar 

  6. A.W. Jeevadason, K.K. Murugavel, M.A. Neelakantan, Renew. Sustain. Energy Rev. 36, 220 (2014)

    Article  CAS  Google Scholar 

  7. W. Al Zoubi, Y.G. Ko, J. Organomet. Chem. 822, 173 (2016)

    Article  CAS  Google Scholar 

  8. M. Khorshidifard, H.A. Rudbari, B. Askari, M. Sahihi, M.R. Farsani, F. Jalilian, G. Bruno, Polyhedron 95, 1 (2015)

    Article  CAS  Google Scholar 

  9. L.M.D.R.S. Martins, A.J.L. Pombeiro, Eur. J. Inorg. Chem. 15–16, 2236 (2016)

    Article  CAS  Google Scholar 

  10. X. Liu, C. Manzur, N. Novoa, S. Celedón, D. Carrillo, J.-R. Hamon, Coord. Chem. Rev. 357, 144 (2018)

    Article  CAS  Google Scholar 

  11. M. Sutradhar, L.M.D.R.S. Martins, M.F.C.G. da Silva, A.J.L. Pombeiro, Coord. Chem. Rev. 301–302, 200 (2015)

    Article  CAS  Google Scholar 

  12. T.F.S. Silva, K.V. Luzyanin, M.V. Kirillova, M.F.G. da Silva, L.M.D.R.S. Martins, A.J.L. Pombeiro, Adv. Synth. Catal. 352, 171 (2010)

    Article  CAS  Google Scholar 

  13. Y. Zhang, L. Zhao, H. Zhang, R. Huang, J. Zhao, Appl. Organomet. Chem. 31, e3709 (2017)

    Article  CAS  Google Scholar 

  14. L.M.D.R.S. Martins, A.J.L. Pombeiro, Coord. Chem. Rev. 265, 74 (2014)

    Article  CAS  Google Scholar 

  15. J.A.L. da Silva, J.J.R.F. da Silva, A.J.L. Pombeiro, Coord. Chem. Rev. 255, 2232 (2011)

    Article  CAS  Google Scholar 

  16. M. Maurya, C. Haldar, A. Kumar, M.L. Kuznetsov, F. Avecilla, J.C. Pessoa, Dalton Trans. 42, 11941 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. J. Adhikary, A. Datta, S. Dasgupta, A. Chakraborty, M.I. Menéndez, T. Chattopadhyay, RSC Adv. 5, 92634 (2015)

    Article  CAS  Google Scholar 

  18. S. Rayati, A. Ghaemi, N. Sadeghzadeh, Catal. Commun. 11, 792 (2010)

    Article  CAS  Google Scholar 

  19. M. Mandal, V. Nagaraju, G.V. Karunakar, B. Sarma, B.J. Borah, K.K. Bania, J. Phys. Chem. C 119, 28854 (2015)

    Article  CAS  Google Scholar 

  20. M. Vlasiou, C. Drouza, T.A. Kabanos, A.D. Keramidas, J. Inorg. Biochem. 147, 39 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. M.S.S. Adam, Appl. Organometal. Chem. 32, e4234 (2018)

    Article  CAS  Google Scholar 

  22. T.F.S. Silva, B.G.M. Rocha, M.F.G. da Silva, L.M.D.R.S. Martins, A.J.L. Pombeiro, New J. Chem. 40, 528 (2016)

    Article  CAS  Google Scholar 

  23. M. Sutradhar, A.J.L. Pombeiro, Coord. Chem. Rev. 265, 89 (2014)

    Article  CAS  Google Scholar 

  24. G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Coord. Chem. Rev. 255, 2345 (2011)

    Article  CAS  Google Scholar 

  25. O. Bortolini, V. Conte, Mass Spectrom. Rev. 25, 724 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. L. Gómez, I. Garcia-Bosch, A. Company, J. Benet-Buchholz, A. Polo, X. Sala, X. Ribas, M. Costas, Angew. Chem. Int. Ed. 48, 5720 (2009)

    Article  CAS  Google Scholar 

  27. M.R.M. Bisht, A. Kumar, M.L. Kuznetsov, F. Avecilla, J.C. Pessoa, Dalton Trans. 40, 6968 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. M. Sedighipoor, A.H. Kianfar, W.A.K. Mahmood, M.H. Azarian, Inorg. Chim. Acta 457, 116 (2017)

    Article  CAS  Google Scholar 

  29. S. Enthaler, X.-F. Wu, M. Weidauer, E. Irran, P. Döhlert, Inorg. Chem. Commun. 46, 320 (2014)

    Article  CAS  Google Scholar 

  30. R. Borthakur, M. Asthana, A. Kumar, R.A. Lal, Inorg. Chem. Commun. 46, 198 (2014)

    Article  CAS  Google Scholar 

  31. S. Bertini, A. Colette, B.Y. Floris, V. Conte, P. Galliani, J. Inorg. Biochem. 147, 44 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. J. Adhikary, A. Datta, S. Dasgupta, A. Chakraborty, M.I. Menendez, T. Chattopadhyay, RSC Adv. 5, 92634 (2015)

    Article  CAS  Google Scholar 

  33. G. Romanowski, J. Kira, M. Wera, Polyhedron 67, 529 (2014)

    Article  CAS  Google Scholar 

  34. G. Grivani, V. Tahmasebi, A.D. Khalaji, K. Fejfarová, M. Dušek, Polyhedron 51, 54 (2013)

    Article  CAS  Google Scholar 

  35. M.S.S. Adam, A.D.M. Mohamad, Polyhedron 151, 118 (2018)

    Article  CAS  Google Scholar 

  36. R.H. Crabtree, J. Organomet. Chem. 689, 4083 (2004)

    Article  CAS  Google Scholar 

  37. G.B. Shul’pin, J. Mol. Catal. A 189, 39 (2002)

    Article  Google Scholar 

  38. A.A. Alshaheri, M.I.M. Tahir, M.B. Abdul Rahman, T.B.S.A. Ravoof, T.A. Saleh, Chem. Eng. J. 327, 423 (2017)

    Article  CAS  Google Scholar 

  39. A.A. Alshaheri, M.I.M. Tahir, M.B. Abdul Rahman, T. Begum, T.A. Saleh, J. Mol. Liq. 240, 486 (2017)

    Article  CAS  Google Scholar 

  40. H.M. Abd El-Lateef, M.S.S. Adam, M.M. Khalaf, J. Taiwan Inst. Chem. Eng. 88, 286 (2018)

    Article  CAS  Google Scholar 

  41. C.D. Nunes, P.V. Vaz, V. Felix, L.F. Veiros, T. Moniz, M. Rangel, S. Realista, A.C. Mourato, M.J. Calhorda, Dalton Trans. 44, 5125 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. M.S.S. Adam, H.M. Abd El-Lateef, K.A. Soliman, J. Mol. Liq. 250, 207 (2018)

    Article  CAS  Google Scholar 

  43. M. Enamullah, M.A. Quddus, M.M. Rahman, T.E. Burrow, J. Mol. Struct. 1130, 765 (2017)

    Article  CAS  Google Scholar 

  44. M.T. Beck, I. Nagypál, Chemistry of Complex Equilibria (Akadémiai Kiadó, Budapest, 1990)

    Google Scholar 

  45. G. Lante, Curr. Opin. Chem. Eng. 21, 76 (2018)

    Article  Google Scholar 

  46. G. Marinescu, A.M. Madalan, M. Andruh, J. Coord. Chem. 68, 479 (2015)

    Article  CAS  Google Scholar 

  47. C. Alvariño, J. Romero, A. Sousa, M.L. Durán, ZAAC 556, 223 (1988)

    Google Scholar 

  48. G.A. Kolawole, J. Coord. Chem. 16, 67 (1987)

    Article  CAS  Google Scholar 

  49. M.S.S. Adam, A.M. Hafez, I. El-Ghamry, Reac. Kinet. Mech. Cat. 124, 779 (2018)

    Article  CAS  Google Scholar 

  50. M.S.S. Adam, Monatsh. Chem. 146, 1823 (2015)

    Article  CAS  Google Scholar 

  51. P. Adão, J.C. Pessoa, R.T. Enriques, M.L. Kuznetsov, F. Avecilla, M.R. Maurya, U. Kumar, I. Correia, Inorg. Chem. 48, 3542 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. A. Di Giuseppe, C. Di Nicola, R. Pettinari, I. Ferino, D. Meloni, M. Passacantando, M. Crucianelli, Catal. Sci. Technol. 3, 1972 (2013)

    Article  CAS  Google Scholar 

  53. H.H. Monfared, R. Bikas, P. Mayer, Inorg. Chim. Acta 363, 2574 (2010)

    Article  CAS  Google Scholar 

  54. C. Cordelle, D. Augustin, J.-C. Daran, R. Poli, Inorg. Chim. Acta 364, 144 (2010)

    Article  CAS  Google Scholar 

  55. S.A. Talouki, G. Grivani, A.D. Khalaji, Appl. Organomet. Chem. 31, e4078 (2017)

    Google Scholar 

  56. J. Rahchamani, M. Behzad, A. Bezaatpour, V. Jahed, G. Dutkiewicz, M. Kubicki, M. Salehi, Polyhedron 30, 2611 (2011)

    Article  CAS  Google Scholar 

  57. S. Rayati, F. Ashouri, C. R. Chim. 15, 679 (2012)

    Article  CAS  Google Scholar 

  58. A. Coletti, P. Galloni, A. Sartorel, V. Conte, B. Floris, Catal. Today 192, 44 (2012)

    Article  CAS  Google Scholar 

  59. P. Galloni, A. Coletti, B. Floris, V. Conte, Inorg. Chim. Acta 420, 144 (2014)

    Article  CAS  Google Scholar 

  60. K. Pamin, G. Pozzi, E. Tabor, W. Bukowski, J. Połtowicz, Catal. Commun. 39, 102 (2013)

    Article  CAS  Google Scholar 

  61. M. Saha, K.M. Vyas, L.M.D.R.S. Martins, N.M.R. Martins, A.J.L. Pombeiro, S.M. Mobin, D. Bhattacherjee, K.P. Bhabak, S. Mukhopadhyay, Polyhedron 132, 53 (2017)

    Article  CAS  Google Scholar 

  62. G.B. Shul’pin, Dalton Trans. 42, 12794 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. A.R. Silva, T. Mourão, J. Rocha, Catal. Today 203, 81 (2013)

    Article  CAS  Google Scholar 

  64. V. Conte, A. Coletti, B. Floris, G. Licini, C. Zonta, Coord. Chem. Rev. 255, 2165 (2011)

    Article  CAS  Google Scholar 

  65. L.P. de Carvalho, K.F. Silva, L.L. dos Santos, M.V.P. dos Santos, J.A.B. da Silva, R.L. Longo, Inorg. Chim. Acta 467, 351 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly thank the Vice-President of Graduate Studies and Academic Research in King Faisal University for their financial support and encouragement to produce this work as a scientific project (Project No. 17122005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shaker S. Adam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, M.S.S., Al-Omair, M.A. & Ullah, F. Catalytic comparison of various polar Zn(II)-Schiff base complexes and VO(II)-Schiff base complexes in (ep)oxidation processes of 1,2-cyclohexene and cyclohexane. Res Chem Intermed 45, 4653–4675 (2019). https://doi.org/10.1007/s11164-019-03855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03855-8

Keywords

Navigation