Skip to main content
Log in

Dendrimer- and nanostructure-supported carboranes and metallacarboranes: an account

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The chemistry of boron clusters has developed into a mature discipline and its application in various fields continues to grow. Several interesting applications, such as their use in organometallic chemistry and catalysis, radionuclide extraction, and medicinal applications, are beyond the scope of this mini review and have been described elsewhere. Therefore, this mini review is limited to the latest findings in author’s laboratory with occasional references to the work of others. The use of carboranes and metallacarboranes in materials science is receiving unprecedented attention; for example, some of the most recent applications of boron clusters include their use in sensors, ion selective electrodes, and dye-sensitized solar cells. Basic synthetic tools to functionalize a variety of boron clusters are now available for controlled synthesis of boron containing molecules that could find specific applications in the field of materials science, including the syntheses of luminescent materials, polymers, coordination polymers, dendrimers, nanomaterials, magnetic nanomaterials, liquid crystals, and nonlinear optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. F. Rase, Handbook of Commercial Catalysts: Heterogeneous Catalysts, CRC Press, New York, 2000, 520 pp.

    Google Scholar 

  2. T. J. Yoon, W. Lee, Y.-S. Oh, J.-K. Lee, New J. Chem., 2003, 27, 227.

    CAS  Google Scholar 

  3. Y. Zhu, C. N. Lee, R. A. Kemp, N. S. Hosmane, J. A. Maguire, Chem. Asian J., 2008, 3, 650

    CAS  Google Scholar 

  4. A. Didier, F. Lu, J. R. Aranzaes, Angew. Chem., Int. Ed., 2005, 44, 7852.

    Google Scholar 

  5. D. K. Yi, S. S. Lee, J. Y. Ying, Chem. Mater., 2006, 18, 2459.

    CAS  Google Scholar 

  6. T. J. Yoon, J. I. Kim, J. K. Lee, Inorg. Chim. Acta, 2003, 345, 228.

    CAS  Google Scholar 

  7. Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane, ChemCatChem, 2010, 2, 365.

    CAS  Google Scholar 

  8. Y. Zhu, Y. Lin, Y.-Z. Zhu, J. Lu, J. A. Maguire, N. S. Hosmane, J. Nanomater., 2010, ID 409320; http://www.hindawi.com/journals/jnm/aip.409320.html.

    Google Scholar 

  9. H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004.

    CAS  Google Scholar 

  10. A. J. Link, D. A. Tirrell, J. Am. Chem. Soc., 2003, 125, 11164.

    CAS  Google Scholar 

  11. S. S. Gupta, K. S. Raja, E. Kaltgrad, E. Strable, M. G. Finn, Chem. Commun., 2005, 4315.

    Google Scholar 

  12. J. A. Opsteen, J. C. M van Hest, Chem. Commun., 2005, 57.

    Google Scholar 

  13. Y. Zhu, T. P. Ang, C. Keith, J. A. Maguire, N. S. Hosmane, M. Takagaki, J. Am. Chem. Soc., 2005, 127, 9875.

    Google Scholar 

  14. J. Zhou, C. Leuschner, C. Kumar, C. K. Hormes, W. O. Soboyejo, Biomaterials, 2006, 27, 2001

    CAS  Google Scholar 

  15. G. Beaune, B. Dubertret, O. Clément, C. Vayssettes, V. Cabuil, C. Ménager, Angew. Chem., Int. Ed., 2007, 46, 5421

    CAS  Google Scholar 

  16. C. Bergemann, D. Muller-Schulte, J. Oster, L. Brassard, A. S. Lübbe, J. Magn. Magn. Mater., 1999, 194, 45.

    CAS  Google Scholar 

  17. X. Zhao, N. S. Hosmane, A. Wu, ChemPhysChem, 2012, 13, 4142.

    CAS  Google Scholar 

  18. J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew. Chem., Int. Ed., 2009, 48, 5875.

    CAS  Google Scholar 

  19. I. Srnová-Šloufová, F. Lednický, A. Gemperle, J. Gemperlová, Langmuir, 2000, 16, 9928.

    Google Scholar 

  20. S. Gao, X. Liu, T. Xu, X. Ma, Z. Shen, A. Wu, Y. Zhu, N. S. Hosmane, ChemistryOPEN, 2013, 2, 88.

    CAS  Google Scholar 

  21. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, 2004, 433 pp.

    Google Scholar 

  22. K. Kleiner, New Scientist, 2005, No. 2522, 34.

    Google Scholar 

  23. G. Young, K. Sulivan, M. R. Zachariah, K. Yu, Combust. Flame, 2009, 156, 322.

    CAS  Google Scholar 

  24. I. Boustani, A. Quandt, E. Hernández, A. Rubio, J. Chem. Phys., 1999, 110, 3176.

    CAS  Google Scholar 

  25. A. Gindulyte, W. N. Lipscomb, L. Massa, Inorg. Chem., 1998, 37, 6544.

    CAS  Google Scholar 

  26. Z. Yinghuai, K. Ch. Yan, J. A. Maguire, N. S. Hosmane, Curr. Chem. Biol., 2007, 1, 141.

    Google Scholar 

  27. P. Zi, M. C. Zhang, Y. You, D. Y. Geng, J. H. Du, X. L. Ma, Z. D. Zhang, J. Mater. Sci., 2003, 38, 689.

    Google Scholar 

  28. C. J. Otten, O. R. Lourie, M.-F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, W. E. Buhro, J. Am. Chem. Soc., 2002, 124, 4564.

    CAS  Google Scholar 

  29. T. T. Xu, J.-G. Zheng, N. Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, R. S. Ruoff, Nano Lett., 2004, 4, 963.

    CAS  Google Scholar 

  30. A. Chakrabarti, T. Xu, L. K. Paulson, K. J. Krise, J. A. Maguire, N. S. Hosmane, J. Nanomater., 2010, ID 589372; http://www.hindawi.com/journals/jnm/2010/589372/.

    Google Scholar 

  31. T. I. Serebryakova, V. I. Lyashenko, V. D. Levandovskii, Powder Metall. Met. Ceram. (Engl. Transl.), 1994, 33, 49 [Poroshkovaya metellurgiya, 1994, No. 1–2, 54].

    Google Scholar 

  32. P. Marmottant, S. Hilgenfeldt, Nature, 2003, 423, 153.

    CAS  Google Scholar 

  33. S. Rooney, in Ultrasound: Its Chemical, Physical, and Biological Effects, Ed. S. Suslick, VCH, New York, 1988, p. 65.

  34. T. Scopigno, U. Balucani, A. Cunsolo, C. Masciovecchio, G. Ruocco, F. Sette, R. Verbeni, Europhys. Lett., 2000, 50, 189.

    CAS  Google Scholar 

  35. S.-Y. Xie, W. Wang, K. A. S. Fernando, X. Wang, Y. Lin, Y.-P. Sun, Chem. Commun., 2005, 3670.

    Google Scholar 

  36. N. G. Chopra, R. J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, Science, 1995, 269, 966.

    CAS  Google Scholar 

  37. N. G. Chopra, A. Zettl, Solid State Commun., 1998, 105, 297

    CAS  Google Scholar 

  38. W. Q. Han, J. Mickelson, A. Zettl, Appl. Phys. Lett., 2002, 81, 1110

    CAS  Google Scholar 

  39. J. Cumming, A. Zettl, Solid State Commun., 2004, 129, 661.

    Google Scholar 

  40. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Scr. Mater., 2001, 44, 1561.

    CAS  Google Scholar 

  41. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett., 1996, 76, 4737

    CAS  Google Scholar 

  42. M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R. Castillo, K. Prassides, K. H. Cheetham, W. Kroto, D. R. M. Walton, Chem. Phys. Lett., 1996, 259, 568.

    CAS  Google Scholar 

  43. O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, W. E. Buhro, Chem. Mater., 2000, 12, 1808

    CAS  Google Scholar 

  44. R. Z. Ma, Y. Bando, T. Sato, K. Kurashima, Chem. Mater., 2001, 13, 2965

    CAS  Google Scholar 

  45. J. S. Wang, V. K. Kayastha, Y. K. Yap, Z. Y. Fan, J. G. Lu, Z. W. Pan, I. N. Ivanov, A. A. Puretzky, D. B. Geohegan, Nano Lett., 2005, 5, 2528.

    CAS  Google Scholar 

  46. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Appl. Phys. Lett., 1996, 69, 2045.

    CAS  Google Scholar 

  47. Y. Chen, M. Conway, J. S. Williams, J. Zou, J. Mater. Res., 2002, 17, 1896.

    CAS  Google Scholar 

  48. D. Golberg, Y. Bando, W. Han, K. Kurashima, T. Sato, Chem. Phys. Lett., 1999, 308, 337

    CAS  Google Scholar 

  49. M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino, K. Kimura, Chem. Phys. Lett., 2000, 324, 359.

    CAS  Google Scholar 

  50. M. W. Smith, K. C. Jordan, C. Park, J.-W. Kim, P. T. Lillehei, R. Crooks, J. S. Harrison, Nanotechnology, 2009, 20, 505604.

    Google Scholar 

  51. L. Xu, Y. Peng, Z. Meng, W. Yu, S. Zhang, X. Liu, Y. Qian, Chem. Mater., 2003, 15, 2675.

    CAS  Google Scholar 

  52. D. M. Kuntz, N. S. Hosmane, Design and Synthesis of Boron Nitride Nanomaterials, M. S. Degree Thesis of D. M. Kuntz, Northern Illinois University, August 2013.

    Google Scholar 

  53. S. Cacchi, G. Fabrizi, F. Gavazza, A. Goggiamani, Org. Lett., 2003, 5, 289.

    CAS  Google Scholar 

  54. B. P. Dash, R. Satapathy, J. A. Maguire, N. S. Hosmane, Org. Lett., 2008, 10, 2247 and references sited wherein.

    CAS  Google Scholar 

  55. C. Bao, R. Lu, M. Jin, P. Xue, C. Tan, T. Xu, G. Liu, Y. Zhao, Chem. — Eur. J., 2006, 12, 3287

    CAS  Google Scholar 

  56. J.-X. Yang, X.-T. Tao, C. X. Yuan, Y. X. Yan, L. Wang, Z. Liu, Y. Ren, M. H. Jiang, J. Am. Chem. Soc., 2005, 127, 3278

    CAS  Google Scholar 

  57. X.-Y. Cao, X.-H. Liu, X.-H. Zhou, Y. Zhang, Y. Jiang, Y. Cao, Y.-X. Cui, J. Pei, J. Org. Chem., 2004, 69, 6050.

    CAS  Google Scholar 

  58. H. Vicente, F. Edwards, S. J. Shetty, Y. Hou, J. E. Boggan, Bioorg. Med. Chem., 2002, 10, 481.

    CAS  Google Scholar 

  59. B. P. Dash, R. Satapathy, J. A. Maguire, N. S. Hosmane, Chem. Commun., 2009, 3267

    Google Scholar 

  60. B. P. Dash, R. Satapathy E. R. Gaillard, J. A. Maguire, N. S. Hosmane, J. Am. Chem. Soc., 2010, 132, 6578

    CAS  Google Scholar 

  61. B. P. Dash, R. Satapathy, E. R. Gaillard, K. M. Norton, J. A. Maguire, N. Chug, N. S. Hosmane, Inorg. Chem., 2011, 50, 5485.

    CAS  Google Scholar 

  62. E. Hao, B. Fabre, F. R. Fronczeka, M. G. H. Vicente, Chem. Mater., 2007, 19, 6195.

    CAS  Google Scholar 

  63. F. A. Gomez, M. F. Hawthorne, J. Org. Chem., 1992, 57, 1384.

    CAS  Google Scholar 

  64. V. Meshcheryakov, C. Zheng, A. R. Kudinov, J. A. Maguire, N. S. Hosmane, Organometallics, 2008, 27, 5033.

    CAS  Google Scholar 

  65. N. S. Hosmane, J. A. Maguire, Organometallics, 2005, 24, 1356

    CAS  Google Scholar 

  66. Z. Xie, Coord. Chem. Rev., 2006, 250, 259

    CAS  Google Scholar 

  67. L. Deng, Z. Xie, Organometallics, 2007, 26, 1832

    CAS  Google Scholar 

  68. M. F. Hawthorne, D. C. Young, D. A. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe, P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 862

    CAS  Google Scholar 

  69. M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, P. A. Wegner, J. Am. Chem. Soc., 1968, 90, 879.

    CAS  Google Scholar 

  70. D. Astruc, C. Ornelas, J. Ruiz, Acc. Chem. Res., 2008, 41, 841

    CAS  Google Scholar 

  71. S. H. Hwag, C. D. Shreiner, C. N. Moorefield, G. R. Newkome, New J. Chem., 2007, 31, 1192

    Google Scholar 

  72. G. R. Newkome, E. He, C. N. Moorefield, Chem. Rev., 1999, 99, 1689

    CAS  Google Scholar 

  73. C. Ornelas, J. Ruiz, D. Astruc, Organometallics, 2009, 28, 2716.

    CAS  Google Scholar 

  74. V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero, S. Serroni, Coord. Chem. Rev., 2001, 219, 545

    Google Scholar 

  75. C. B. Gorman, J. C. Smith, Acc. Chem. Res., 2001, 34, 60

    CAS  Google Scholar 

  76. C. M. Casado, I. Cuadrado, M. Moran, B. Alonso, B. Garcia, B. Gonzalez, J. Losada, Coord. Chem. Rev., 1999, 185–186, 53

    Google Scholar 

  77. V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Acc. Chem. Res., 1998, 31, 26.

    CAS  Google Scholar 

  78. A. E. Kaifer, Eur. J. Inorg. Chem., 2007, 5015

    Google Scholar 

  79. W. Ong, M. Gomez-Kaifer, Chem. Commun., 2004, 1677

    Google Scholar 

  80. I. Cuadrado, M. Moran, C. M. Casado, B. Alonso, J. Losada, Coord. Chem. Rev., 1999, 193–195, 395.

    Google Scholar 

  81. R. van Heerbeek, P. C. J. Kamer, P. W. N. M. van Leeuwen, J. N. H. Reek, Chem. Rev., 2002, 102, 3717

    Google Scholar 

  82. R. Kreiter, A. W. Kleij, R. J. M. K. Gebbink, G. van Koten, Top. Curr. Chem., 2001, 217, 163

    CAS  Google Scholar 

  83. D. Astruc, F. Chardac, Chem. Rev., 2001, 101, 2991

    CAS  Google Scholar 

  84. G. E. Oosterom, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Angew. Chem., Int. Ed., 2001, 40, 1828

    CAS  Google Scholar 

  85. J. Lemo, K. Heuze, D. Astruc, Chem. Commun., 2007, 4351.

    Google Scholar 

  86. B. P. Dash, R. Satapathy, J. A. Maguire, N. S. Hosmane, Organometallics, 2010, 29, 5230.

    CAS  Google Scholar 

  87. R. Djeda, J. Ruiz, D. Astruc, R. Satapathy, B. P. Dash, N. S. Hosmane, Inorg. Chem., 2010, 49, 10702.

    CAS  Google Scholar 

  88. L. Liang, A. Rapakousiou, L. Salmon, J. Ruiz, D. Astruc, B. P. Dash, R. Satapathy, J. W. Sawicki, N. S. Hosmane, Eur. J. Inorg. Chem., 2011, 3043.

    Google Scholar 

  89. P. Xu, T. Xu, J. Lu, S. Gao, N. S. Hosmane, B. Huang, Y. Dai, Y. Wang, Energy Environ. Sci., 2010, 3, 1128.

    CAS  Google Scholar 

  90. A. Chakrabarti, J. Lu, A. M. McNamara, L. M. Kuta, S. M. Stanley, Z. Xiao, J. A. Maguire, N. S. Hosmane, Inorg. Chim. Acta, 2011, 374, 627.

    CAS  Google Scholar 

  91. A. K. Geim, K. S. Novoselov, Nat. Mater., 2007, 6, 183.

    CAS  Google Scholar 

  92. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C, 2008, 112, 8192.

    CAS  Google Scholar 

  93. C.-D. Kim, B.-K. Min, W.-S. Jung, Carbon, 2009, 47, 1610.

    Google Scholar 

  94. A. Chakrabarti, J. Lu, J. C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, N. S. Hosmane, J. Mater. Chem., 2011, 21, 9491.

    CAS  Google Scholar 

  95. E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, J. Propul. Power, 1993, 9, 197.

    CAS  Google Scholar 

  96. W. Kaim, N. S. Hosmane, J. Chem. Sci., 2010, 122, 7.

    CAS  Google Scholar 

  97. N. S. Hosmane, Y. Zhu, J. A. Maguire, S. N. Hosmane, A. Chakrabarti, Main Group Chem., 2010, 9, 153.

    CAS  Google Scholar 

  98. R. Satapathy, B. P. Dash, J. A. Maguire, N. S. Hosmane, Dalton Trans., 2010, 39, 6613.

    CAS  Google Scholar 

  99. Y. Zhu, S. Xiao, J. A. Maguire, N. S. Hosmane, Molecules, 2010, 15, 9437; http://www.mdpi.com/1420-3049/15/12/9437.

    CAS  Google Scholar 

  100. R. Satapathy, B. P. Dash, J. A. Maguire, N. S. Hosmane, Collect. Czech. Chem. Commun., 2010, 75, 995.

    CAS  Google Scholar 

  101. R. Satapathy, B. P. Dash, C. Zheng, J. A. Maguire, N. S. Hosmane, J. Org. Chem., 2011, 76, 3562.

    CAS  Google Scholar 

  102. Y. Zhu, C. Y. Koh, J. A. Maguire, N. S. Hosmane, in Hybrid Nanomaterials: Synthesis, Characterization, and Applications, John Wiley and Sons, Hoboken, 2011, p. 181.

    Google Scholar 

  103. Boron Science: New Technologies and Applications, Ed. N. S. Hosmane, Taylor and Francis Books/CRC Press, Boca Raton, 2011, 878 pp. (a), p. 147 (b), p. 233 (c) p. 655 (d), p. 475 (e).

    Google Scholar 

  104. N. S. Hosmane, J. A. Maguire, Y. Zhu, M. Takagaki, Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, World Sci. Publ., Hackensack, 2012, 272 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Hosmane.

Additional information

According to the materials of the International Conference “Organometallic and Coordination Chemistry: Fundamentals and Applied Aspects” (September 1–7, 2013, Nizhniy Novgorod).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0788–0811, April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S.M., Hosmane, N.S. Dendrimer- and nanostructure-supported carboranes and metallacarboranes: an account. Russ Chem Bull 63, 788–810 (2014). https://doi.org/10.1007/s11172-014-0512-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0512-z

Key words

Navigation