Skip to main content
Log in

Nucleation and mechanism of metal sulfide film growth using deposition by thiocarbamide

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The mechanism of hydrolytic decomposition of thiocarbamide upon the interaction with metal salts with deposition of thin films of sulfide was proposed. The kinetic studies of the transformation of metal salt into sulfide and IR spectroscopy confirmed that one of the hydrolysis products of thiocarbamide was cyanamide. The concept about the activation of thiocarbamide decomposition was extended due to the nucleophilic addition of anions to form an intermediate reaction complex thiocarbamide—metal ion—nucleophile. The activation weakens in the order OH > CH3COO > Cl > Br > I. The presence and active role of colloidal components of reaction mixtures in the nucleation and formation of films of metal sulfides by chemical bath synthesis were established by spectrophotometric and kinetic measurements. It was concluded that from the viewpoint of fractal formalism metal sulfide films are formed in chemical bath deposition via the mechanism of cluster—cluster aggregation in the form of consecutive evolution of structural levels. A complex scheme of the mechanism of chemical bath deposition of metal sulfides by thiocarbamide was proposed. The results of studies of their phase composition, microstructure, and properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Kurbatov, Voprosy oboronnoi tekhniki [Problems of Defense Technology], 1995, 1–2, 3 (in Russian).

    Google Scholar 

  2. V. F. Markov, G. A. Kitaev, S. N. Uimin, L. N. Maskaeva, Innovatsiya [Innovation], 1998, 1, 55 (in Russian).

    Google Scholar 

  3. L. Bakueva, S. Musihin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, E. H. Sargent, Appl. Phys. Lett., 2003, 82, 2895.

    Article  CAS  Google Scholar 

  4. E. I. Rogachena, Y. O. Vekhov, M. S. Dresselhaus, S. B. Cronin, Thin Solid Films, 2003, 423, 115.

    Article  Google Scholar 

  5. P. K. Nair, M. T. S. Nair, A. Fernandez, M. Ocampo, J. Phys. D: Appl. Phys., 1989, 22, 829.

    Article  CAS  Google Scholar 

  6. P. K. Nair, M. T. S. Nair, J. Phys. D: Appl. Phys., 1990, 23, 150.

    Article  CAS  Google Scholar 

  7. P. K. Nair, M. T. S. Nair, V. M. Garcia, O. L. Arenas, Y. Peña, A. Castillo, I. T. Ayala, O. Gomezdaza, A. Sánchez, J. Campos, H. Hu, R. Suárez, M. E. Rincón, Sol. Energy Mater. Sol. Cells, 1998, 52, 313.

    Article  CAS  Google Scholar 

  8. K. Chopra, S. R. Das, Thin Film Solar Cells, Plenum Press, New York, 1983, 607 pp.

    Book  Google Scholar 

  9. S. N. Shtykov, T. Yu. Rusanova, Ros. Khim. Zh., 2008, 52, No. 2, 92 [Mendeleev Chem. J. (Engl. Transl.), 2008, 52, No. 2].

    CAS  Google Scholar 

  10. A. Galdikas, A. Mironas, V. Strazdiene, A. Setkus, I. Ancutiene, V. Janickis, J. Sens. Actuators B, 2000, 67, 76.

    Article  CAS  Google Scholar 

  11. V. F. Markov, L. N. Maskaeva, J. Anal. Chem., 2001, 56, 754 [Zh. Anal. Khim., 2001, 56, 846].

    Article  CAS  Google Scholar 

  12. S. K. Kulkarni, U. Winkler, N. Deshmukh, P. H. Boese, R. Fink, E. Unbuch, Appl. Surf. Sci., 2001, 169–170, 438.

    Article  Google Scholar 

  13. V. A. Oleinikov, A. V. Sukhanova, I. R. Nabiev, Ros. nanotekhnologii [Russian Nanotechnologies], 2007, 2, 160 (in Russian).

    Google Scholar 

  14. P. O’Brien, J. McAleese, J. Mater. Chem., 1998, 8, 2309.

    Article  Google Scholar 

  15. V. F. Markov, L. N. Maskaeva, P. N. Ivanov, Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment [Chemical Bath Deposition of Metal Sulfide Films: Modeling and Experiment], UrO RAN, Ekaterinburg, 2006, 218 pp. (in Russian).

    Google Scholar 

  16. O. P. Moreno, M. Ch. Portillo, M. M. Flores, J. M. Juarez, G. A. Avila, R. L. Morales, O. Z. Angel, J. Mater. Sci. Eng. A, 2011, 1, 759.

    Google Scholar 

  17. S. Rajpal, V. Bandyopadhyay, J. Nano-Electron. Phys., 2013, 5, 03021.

    Google Scholar 

  18. Yu. N. Makurin, R. N. Pletnev, D. G. Kleshchev, N. A. Zhelonkin, Promezhutochnyi kompleks v khimicheskikh reaktsiyakh [Intermediate Complex in Chemical Reactions], AN SSSR UrO, Sverdlovsk, 1990, p. 78 (in Russian).

    Google Scholar 

  19. N. V. Vorob’ev-Desyatovskii, Yu. N. Kukushkin, V. V. Sibirskaya, Koordinats. Khim., 1985, 11, 1299 [Sov. J. Coord. Chem. (Engl. Transl.), 1985, 11, No. 10].

    Google Scholar 

  20. A. V. Naumov, V. N. Semenov, E. M. Averbakh, Khim. prom-st’ [Chemical Indusry], 2003, 80, 17 (in Russian).

    Google Scholar 

  21. G. Charlot, Les Methodes de la Chimie Analytique: Analyse Quantitative Minerale, Masson, Paris, 1961, 1024 pp.

    Google Scholar 

  22. I. T. Romanov, G. A. Kitaev, Fiziko-khimiya protsessov na mezhfaznykh granitsakh [Physicochemistry of Processes on Interfaces], Izd-vo UPI, Sverdlovsk, 1976, p. 6 (in Russian).

    Google Scholar 

  23. G. A. Kitaev, L. N. Maskaeva, V. F. Markov, A. Yu. Kurkin, Izv. Akad. Nauk SSSR. Neorg. Mater., 1989, 25, 1262 [Inorg. Mater. (Engl. Transl.), 1989, 25, No. 8].

    CAS  Google Scholar 

  24. S. Kotrly, L. Sucha, Handbook of Chemical Equilibria in Analytical Chemistry, Ellis Horwood, New York-Brisbane-Chichester-Toronto, 1985, p. 143.

    Google Scholar 

  25. Yu. Yu. Lur’e, Spravochnik po analiticheskoi khimii [Manual on Analytical Chemistry], Khimiya, Moscow, 1989, 448 pp. (in Russian).

    Google Scholar 

  26. Yu. N. Makurin, V. I. Dvoinin, R. N. Pletnev, 15-i Mendeleevskii s"ezd po obshchei i prikladnoi khimii [15th Mendeleev Congress on General and Applied Chemistry] (Minsk, May 24–29, 1993), Minsk, 1993, 2, 273 (in Russian).

    Google Scholar 

  27. A. A. Rempel, Russ. Chem. Rev., 2007, 76, 435.

    Article  CAS  Google Scholar 

  28. J. Herrero, M. T. Gutierrez, C. Guillen, J. M. Doña, M. A. Martinez, A. M. Chaparro, R. Bayón, Thin Solid Films, 2000, 361–362, 28.

    Article  Google Scholar 

  29. A. A. Vlasov, Staticheskie funktsii raspredeleniya [Statistical Distribution Functions], Nauka, Moscow, 1966, p. 324–356 (in Russian).

    Google Scholar 

  30. N. N. Sheftal’, Rost kristallov [Crystal Growth], Nauka, Moscow, 1974, 10, 195 (in Russian).

    Google Scholar 

  31. I. T. Romanov, G. A. Kitaev, Kolloid. Zh., 1979, 41, 590 [Colloid. J. USSR (Engl. Transl.), 1979, 41, No. 3].

    CAS  Google Scholar 

  32. B. B. Nayak, H. N. Acharya, J. Mater. Sci. Lett., 1985, 4, 651.

    Article  CAS  Google Scholar 

  33. M. Dutt, D. Kameshwari, D. Subbarao, Colloids Surf., A., 1998, 133, 89.

    Article  CAS  Google Scholar 

  34. B. M. Smirnov, Fizika fraktal’nykh klasterov [Physics of Fractal Clusters], Nauka, Moscow, 1991, 134 pp. (in Russian).

    Google Scholar 

  35. L. N. Maskaeva, G. A. Kitaev, V. F. Markov, Tez. dokl. Vtoroi mezhregion. konf. s mezhdunar. uchastiem “Ul’tradispersnye materialy” [Proc. Second Interdistrict Conference with International Participation "Ultradispersed Materials"] (Krasnoyarsk, October 5–7, 1999), Krasnoyarsk, 1999, 42 (in Russian).

    Google Scholar 

  36. V. F. Markov, L. N. Maskaeva, P. N. Ivanov, Kondensirovannye sredy i mezhfaznye granitsy [Condensed Media and Interfaces], 2004, 6, 374 (in Russian).

    Google Scholar 

  37. J. Feder, Fractals, Plenum Press, New York, 1988, 283 pp.

    Book  Google Scholar 

  38. G. A. Kitaev, L. N. Maskaeva, V. F. Markov, L. E. Vasyunina, L. A. Burkova, Izv. Akad. Nauk SSSR. Neorg. Mater., 1989, 25, 1438 [Inorg. Mater. (Engl. Transl.), 1989, 25, No. 9].

    CAS  Google Scholar 

  39. G. A. Kitaev, V. F. Markov, L. N. Maskaeva, L. E. Vasyunina, I. V. Shilova, Izv. Akad. Nauk SSSR. Neorg. Mater., 1990, 26, 248 [Inorg. Mater. (Engl. Transl.), 1990, 26, No. 2].

    CAS  Google Scholar 

  40. L. N. Maskaeva, V. F. Markov, T. V. Vinogradova, A. A. Rempel’, A. I. Gusev, Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya [Surface: X-Ray, Synchronous, and Neutron Studies], 2003, 9, 35 (in Russian).

    Google Scholar 

  41. L. N. Maskaeva, V. F. Markov, V. I. Voronin, A. I. Gusev, Thin Solid Films, 2004, 361, 325.

    Article  Google Scholar 

  42. D. S. Epaneshnikova, V. F. Markov, L. N. Maskaeva, Khim. Tekhnologiya[Chemical Technology], 2008, 9, 417 (in Russian).

    Google Scholar 

  43. L. N. Maskaeva, V. F. Markov, I. M. Morozova, N. M. Barbin, V. Ya. Shur, E. I. Shishkin, E. S. Samoilova, Pis’ma v Zh. Eksp. Teor. Fiz., 2008, 34, No. 11, 39 [JETP Lett. (Engl. Transl.), 2008, 38, No. 11].

    Google Scholar 

  44. A. S. Katysheva, V. F. Markov, L. N. Maskaeva, Zh. Neorg. Khim., 2013, 58, 940 [Russ. J. Inorg. Chem. (Engl. Transl.), 2013, 58, No. 7].

    Google Scholar 

  45. S. S. Tulenin, V. F. Markov, L. N. Maskaeva, M. V. Kuznetsov, Butlerov. Soobshch. [Butlerov’s Reports], 2013, 33, 97 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. N. Chupakhin on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1523–1532, July, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, V.F., Maskaeva, L.N. Nucleation and mechanism of metal sulfide film growth using deposition by thiocarbamide. Russ Chem Bull 63, 1523–1532 (2014). https://doi.org/10.1007/s11172-014-0630-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0630-7

Key words

Navigation