Skip to main content

Advertisement

Log in

Quantitative Analysis of Representations of Nature of Science in Nordic Upper Secondary School Textbooks Using Framework of Analysis Based on Philosophy of Chemistry

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The aim of this study was to assess how the different aspects of nature of science (NOS) were represented in Finnish and Swedish upper secondary school chemistry textbooks. The dimensions of NOS were analyzed from five popular chemistry textbook series. The study provides a quantitative method for analysis of representations of NOS in chemistry textbooks informed by domain-specific research on the philosophy of chemistry and chemical education. The selection of sections analyzed was based on the four themes of scientific literacy: knowledge of science, investigate nature of science, science as a way of thinking, and interaction of science, technology and society. For the second round of analysis the theme of science as a way of thinking was chosen for a closer inspection. The units of analysis in this theme were analyzed using seven domain specific dimensions of NOS: tentative, empirical, model-based, inferential, technological products, instrumentation, and social and societal dimensions. Based on the inter-rater agreement, the procedure and frameworks of analysis presented in this study was a reliable way of assessing the emphasis given to the domain specific aspects of NOS. All textbooks have little emphasis on the theme science as a way of thinking on a whole. In line with the differences of curricula, Swedish textbooks emphasize the tentative dimension of NOS more than Finnish textbooks. To provide teachers with a sufficiently wide variety of examples to discuss the different dimensions of NOS changes to the national core curricula are needed. Although changing the emphasis of the curricula would be the most obvious way to affect the emphasis of the textbooks, other efforts such as pre- and in-service courses for developing teachers understanding of NOS and pedagogic approaches for NOS instruction to their classroom practice might also be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Erduran (2001), Erduran and Scerri (2002), Scerri (2003), Erduran and Duschl (2004), Lombardi and Labarca (2007).

  2. See Niaz (1998, 2001), Staver and Lumpe (1993), Brito et al. (2005), and Chiappetta et al. (1991c).

  3. Specifically Osborne et al. (2003), Lederman et al. (2002), Abd-El-Khalick et al. (2008) and Vesterinen et al. (2009).

  4. Specifically Nye (1993), Schummer (1997), van Brakel (2000), Aftalion (2001), Kovac (2002), Laszlo (2006).

  5. See Lederman et al. (2002), Osborne et al. (2003), Abd-El-Khalick et al. (2008), Niaz and Maza (2011).

  6. See Zeidler (1997), Khishfe and Abd-El-Khalick (2002, 2004).

  7. E.g. Abd-El-Khalick (2005), Waters-Adams (2006), Niaz (2008), Adúrix-Bravo and Izquierdo-Aymerich (2009), Vesterinen and Aksela (2009).

References

  • Abd-El-Khalick, F. (1998). The influence of history of science courses on students’ conceptions of the nature of science. Unpublished doctoral dissertation Oregon State University, Oregon.

  • Abd-El-Khalick, F. (2005). Developing deeper understandings of nature of science: The impact of a philosophy of science course on preservice science teachers’ views and instructional planning. International Journal of Science Education, 27, 15–42.

    Article  Google Scholar 

  • Abd-El-Khalick, F., & Akerson, V. L. (2004). Learning as conceptual change: Factors mediating the development of preservice elementary teachers’ views of nature of science. Science Education, 88, 785–810.

    Article  Google Scholar 

  • Abd-El-Khalick, F., Waters, M., & Le, A.-P. (2008). Representations of nature of science in high school chemistry textbooks over the past four decades. Journal of Research in Science Teaching, 45, 835–855.

    Article  Google Scholar 

  • Adúrix-Bravo, A., & Izquierdo-Aymerich, M. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18, 1177–1192.

    Article  Google Scholar 

  • Aftalion, F. (2001). A history of the international chemical industry. Philadelphia, PA: Chemical Heritage Press.

    Google Scholar 

  • Ahtineva, A. (2000). Oppikirja—tiedon välittäjä ja opintojen innoittaja?. Turku: University of Turku.

    Google Scholar 

  • Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York, NY: Teachers College, Columbia University.

    Google Scholar 

  • Baird, D. (2000). Analytical instrumentation and instrumental objectivity. In N. Bhushan & S. Rosenfeld (Eds.), Of minds and molecules: New philosophical perspectives on chemistry (pp. 90–113). New York, NY: Oxford University Press.

    Google Scholar 

  • Benfey, O. T. (2006). The conceptual structure of the sciences: Reemergence of the human dimension. In D. Baird, E. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Dordrecht: Springer.

    Google Scholar 

  • Borén, H., Börner, M., Larsson, M., & Lindh, B. (2008). Kemiboken B. Stockholm: Liber.

    Google Scholar 

  • Borén, H., Boström, A., Börner, M., Larsson, M., Lillieborg, S., & Lindh, B. (2005). Kemiboken A. Stockholm: Liber.

    Google Scholar 

  • Brito, A., Rodríguez, M. A., & Niaz, M. (2005). A reconstruction of development of the periodic table based on history and philosophy of science and its implications for general chemistry textbooks. Journal of Research in Science Teaching, 42, 84–111.

    Article  Google Scholar 

  • Carpenter, B. K. (2000). Models and explanations: Understanding chemical reaction mechanics. In N. Bhushan & S. Rosenfeld (Eds.), Of minds and molecules: New philosophical perspectives on chemistry (pp. 211–229). New York, NY: Oxford University Press.

    Google Scholar 

  • Cartwright, N. D. (1983). How the laws of physics lie. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Chiappetta, E. L., Fillman, D. A., & Sethna, G. H. (1991a). Procedures for conducting content analysis of science textbooks. Houston, TX: University of Houston, Department of Curriculum & Instruction.

    Google Scholar 

  • Chiappetta, E. L., Fillman, D. A., & Sethna, G. H. (1991b). A method to quantify major themes of scientific literacy in science textbooks. Journal of Research in Science Teaching, 28, 713–725.

    Article  Google Scholar 

  • Chiappetta, E. L., Sethna, G. H., & Fillman, D. A. (1991c). A quantitative analysis of high school chemistry textbooks for scientific literacy themes and expository learning aids. Journal of Research in Science Teaching, 28, 939–952.

    Article  Google Scholar 

  • Chiappetta, E. L., Sethna, G. H., & Fillman, D. A. (1993). Do middle school life science textbooks provide a balance of scientific literacy themes? Journal of Research in Science Teaching, 30, 787–797.

    Article  Google Scholar 

  • Christie, M. (1994). Philosophers versus chemists concerning ‘laws of nature’. Studies in History and Philosophy of Science, 25, 612–630.

    Article  Google Scholar 

  • Clough, M. (2007). Teaching the nature of science to secondary and post-secondary students: Questions rather than tenets, The Pantaneto Forum, 25, http://www.pantaneto.co.uk/issue25/clough.htm. Accessed 5 September 2011.

  • Dalgety, J., Coll, R. K., & Jones, A. (2003). Development of chemistry attitudes and experiences questionnaire (CAEQ). Journal of Research in Science Teaching, 40, 649–668.

    Article  Google Scholar 

  • Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2005). Kemi A: Tema & Teori (2nd ed.). Stockholm: Bonnier Utbildning.

    Google Scholar 

  • Engström, C., Backlund, P., Berger, R., & Grennberg, H. (2008). Kemi B: Tema & Teori (2nd ed.). Stockholm: Bonnier Utbildning.

    Google Scholar 

  • Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. Science & Education, 10, 581–593.

    Article  Google Scholar 

  • Erduran, S., & Duschl, R. (2004). Interdisciplinary characterization of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40, 111–144.

    Article  Google Scholar 

  • Erduran, S., & Scerri, E. (2002). The nature of chemical knowledge and chemical education. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 7–28). Dordrecht: Kluwer.

    Google Scholar 

  • Finnish National Board of Education. (2003). National core curriculum for upper secondary schools 2003. Helsinki: Finnish National Board of Education.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Gilbert, J. K., & Boulter, C. J. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Guo, C.-J. (2007). Issues in science learning: An international perspective. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 227–256). London: Erlbaum.

    Google Scholar 

  • Hacking, I. (1983). Representing and inventing: Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Henriksson, A. (2007a). Syntes A: Kemi för gymnasieskolan. Malmö: Gleerups Utbildning.

    Google Scholar 

  • Henriksson, A. (2007b). Syntes B: Kemi för gymnasieskolan. Malmö: Gleerups Utbildning.

    Google Scholar 

  • Höttecke, D., & Riess, F. (2009). Developing and implementing case studies for teaching science with the help of history and philosophy: Framework and critical perspectives on ‘HIPST’a European approach for the inclusion of history and philosophy in science teaching. Paper presented at the tenth international history, philosophy, and science teaching conference, University of Notre Dame, South Bend, USA. June 24–28, 2009.

  • Huberman, A. M., & Miles, M. B. (1994). Data management and analysis methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Kaila, L., Meriläinen, P., Ojala, P., & Pihko, P. (2005a). Reaktio 2. Helsinki: Kustannusosakeyhtiö Tammi.

    Google Scholar 

  • Kaila, L., Meriläinen, P., Ojala, P., & Pihko, P. (2005b). Reaktio 3. Helsinki: Kustannusosakeyhtiö Tammi.

    Google Scholar 

  • Kaila, L., Meriläinen, P., Ojala, P., & Pihko, P. (2005c). Reaktio 4. Helsinki: Kustannusosakeyhtiö Tammi.

    Google Scholar 

  • Kaila, L., Meriläinen, P., Ojala, P., & Pihko, P. (2005d). Reaktio 5. Helsinki: Kustannusosakeyhtiö Tammi.

    Google Scholar 

  • Kaila, L., Meriläinen, P., Ojala, P., Pihko, P., & Salo, K. (2005e). Reaktio 1. Helsinki: Kustannusosakeyhtiö Tammi.

    Google Scholar 

  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39, 551–578.

    Article  Google Scholar 

  • Kovac, J. (2002). Theoretical and practical reasoning in chemistry. Foundations of Chemistry, 4, 163–171.

    Article  Google Scholar 

  • Kovac, J. (2007). Moral rules, moral ideals, and use-inspired research. Science and Engineering Ethics, 13, 159–169.

    Article  Google Scholar 

  • Laszlo, P. (2006). On the self-image of chemists, 1950–2000. HYLE: International Journal for Philosophy of Chemistry, 12, 99–130.

    Google Scholar 

  • Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84, 71–94.

    Article  Google Scholar 

  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39, 497–521.

    Article  Google Scholar 

  • Lehtiniemi, K., & Turpeenoja, L. (2004a). Mooli 1. Helsinki: Kustannusosakeyhtiö Otava.

    Google Scholar 

  • Lehtiniemi, K., & Turpeenoja, L. (2004b). Mooli 2. Helsinki: Kustannusosakeyhtiö Otava.

    Google Scholar 

  • Lehtiniemi, K., & Turpeenoja, L. (2004c). Mooli 3. Helsinki: Kustannusosakeyhtiö Otava.

    Google Scholar 

  • Lehtiniemi, K., & Turpeenoja, L. (2004d). Mooli 4. Helsinki: Kustannusosakeyhtiö Otava.

    Google Scholar 

  • Lehtiniemi, K., & Turpeenoja, L. (2004e). Mooli 5. Helsinki: Kustannusosakeyhtiö Otava.

    Google Scholar 

  • Lombardi, O., & Labarca, M. (2007). The philosophy of chemistry as a new resource for chemistry education. Journal of Chemical Education, 84, 187–192.

    Article  Google Scholar 

  • Lumpe, A. T., & Beck, J. (1996). A profile of high school biology textbooks using scientific literacy recommendations. The American Biology Teacher, 58, 147–153.

    Article  Google Scholar 

  • MAOL ry. (2007). Lukion opetussuunnitelmakysely: Yhteenvetoraportti. Helsinki: MAOL ry.

    Google Scholar 

  • Matthews, M. R. (2004). Thomas Kuhn’s impact on science education: What lessons can be learned? Science Education, 88, 90–118.

    Article  Google Scholar 

  • McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 3–29). Dordrecht: Kluwer.

    Google Scholar 

  • McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education documents. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 41–52). Dordrecht: Kluwer.

    Google Scholar 

  • National Agency for Education. (2001). Natural science programme GY 2000:14. Västerås: National Agency for Education and Fritzes.

    Google Scholar 

  • Niaz, M. (1998). From cathode rays to alpha particles to quantum of action: A rational reconstruction of structure of the atom and its implications for chemistry textbooks. Science Education, 82, 527–552.

    Article  Google Scholar 

  • Niaz, M. (2000). A rational reconstruction of the kinetic molecular theory of gases based on history and philosophy of science and its implications for chemistry textbooks. Instructional Science, 28, 23–50.

    Article  Google Scholar 

  • Niaz, M. (2001). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks. International Journal of Science Education, 23, 623–641.

    Article  Google Scholar 

  • Niaz, M. (2008). What ‘ideas-about-science’ should be taught in school science? A chemistry teachers’ perspective. Instructional Science, 36, 233–249.

    Article  Google Scholar 

  • Niaz, M., & Maza, A. (2011). Nature of science in general chemistry textbooks. Dordrecht: Springer.

    Book  Google Scholar 

  • Nye, M. J. (1993). From chemical philosophy to theoretical chemistry: Dynamics of matter and dynamics of disciplines, 1800–1950. Berkeley, CA: University of California Press.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Education, 40, 692–720.

    Google Scholar 

  • Roach, L. E., & Wandersee, J. H. (1995). Putting people back into science: Using historical vignettes. School Science and Mathematics, 95, 365–370.

    Google Scholar 

  • Rodriguez, M. A., & Niaz, M. (2002). How in spite of the rhetoric, history of chemistry has been ignored in presenting atomic structure in textbooks. Science & Education, 11, 423–441.

    Article  Google Scholar 

  • Scerri, E. R. (2003). Philosophical confusion in chemical education research. Journal of Chemical Education, 80, 468–474.

    Article  Google Scholar 

  • Scerri, E. R. (2007). The periodic table: Its story and its significance. New York, NY: Oxford University Press.

    Google Scholar 

  • Scerri, E. R., & McIntyre, L. (1997). The case for philosophy of chemistry. Synthese, 111, 213–232.

    Article  Google Scholar 

  • Schummer, J. (1997). Scientometric studies on chemistry II: Aims and methods of producing new chemical substances. Scientometrics, 39, 125–140.

    Article  Google Scholar 

  • Schummer, J. (1999). Coping with the growth of chemical knowledge: Challenges for chemistry documentation, education, and working chemists. Educación Química, 10, 92–101.

    Google Scholar 

  • Schwartz, R. S., & Lederman, N. G. (2002). “It’s the nature of the beast”: The influence of knowledge and intentions on learning and teaching nature of science. Journal of Research in Science Teaching, 39, 205–236.

    Article  Google Scholar 

  • Smit, W. A., Bochkov, A. F., & Caple, R. (1998). Organic synthesis: The science behind the art. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Staver, J., & Lumpe, A. (1993). A content analysis of the presentation of the concept of the mole in chemistry textbooks. Journal of Research in Science Teaching, 25, 763–775.

    Article  Google Scholar 

  • Tala, S. (2009). Unified view of science and technology education: Technoscience and technoscience education. Science & Education, 18, 275–298.

    Article  Google Scholar 

  • Tala, S. (2011). Enculturation into technoscience: Analysis of the views of novices and experts on modeling and learning in nanophysics. Science & Education, 20, 733–760.

    Article  Google Scholar 

  • Tamir, P. (2003). Assessment and evaluation in science education: Opportunities to learn and outcomes. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education: Part two (pp. 761–785). Dortrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tikkanen, G. (2010). Kemian ylioppilaskokeen tehtävät summatiivisen arvioinnin välineenä. Helsinki: Helsingin yliopisto.

    Google Scholar 

  • Van Brakel, J. (2000). Philosophy of chemistry: Between the scientific and the manifest image. Leuven: Leuven University Press.

    Google Scholar 

  • Vesterinen, V.-M., & Aksela, M. (2009). A novel course of chemistry as a scientific discipline: How do prospective teachers perceive nature of chemistry through visits to research groups? Chemistry Education Research and Practice, 10, 132–141.

    Article  Google Scholar 

  • Vesterinen, V.-M., Aksela, M., & Sundberg, M. R. (2009). Nature of Chemistry in the National Frame Curricula for Upper Secondary Education in Finland, Norway and Sweden. NorDiNa, 5, 200–212.

    Google Scholar 

  • Wartofsky, M. W. (1979). Models: Representation and the scientific understanding. Dordrecht: Reidel.

    Google Scholar 

  • Waters-Adams, S. (2006). The relationship between understanding the nature of science and practice: The influence of teachers’ beliefs about education, teaching and learning. International Journal of Science Education, 28, 919–944.

    Article  Google Scholar 

  • Wilkinson, J. (1999). A quantitative analysis of physics textbooks for scientific literacy themes. Research in Science Education, 29, 385–399.

    Article  Google Scholar 

  • Williams, J. D. (2002). Ideas and evidence in science: The portrayal of scientists in GCSE textbooks. School Science Review, 84(307), 89–101.

    Google Scholar 

  • Yager, R. E. (1996). Science/technology/society as a reform in science education. Albany, NY: State University Press.

    Google Scholar 

  • Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483–496.

    Article  Google Scholar 

  • Ziman, J. (1984). An introduction to science studies: The philosophical and social aspects of science and technology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli-Matti Vesterinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesterinen, VM., Aksela, M. & Lavonen, J. Quantitative Analysis of Representations of Nature of Science in Nordic Upper Secondary School Textbooks Using Framework of Analysis Based on Philosophy of Chemistry. Sci & Educ 22, 1839–1855 (2013). https://doi.org/10.1007/s11191-011-9400-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9400-1

Keywords

Navigation