Skip to main content
Log in

A synthetic Earth gravity model based on a topographic-isostatic model

  • Regular Paper
  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Earth’s gravity field is related to the topographic potential in medium and higher degrees, which is isostatically compensated. Hence, the topographic-isostatic (TI) data are indispensable for extending an available Earth Gravitational Model (EGM) to higher degrees. Here we use TI harmonic coefficients to construct a Synthetic Earth Gravitational Model (SEGM) to extend the EGMs to higher degrees. To achieve a high-quality SEGM, a global geopotential model (EGM96) is used to describe the low degrees, whereas the medium and high degrees are obtained from the TI or topographic potential. This study differes from others in that it uses a new gravimetric-isostatic model for determining the TI potential. We test different alternatives based on TI or only topographic data to determine the SEGM. Although the topography is isostatically compensated only to about degree 40–60, our study shows that using a compensation model improves the SEGM in comparison with using only topographic data for higher degree harmonics. This is because the TI data better adjust the applied Butterworth filter, which bridges the known EGM and the new high-degree potential field than the topographic data alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren J., 2004. Regional Geoid Determination Methods for the Era of Satellite Gravimetry Numerical Investigations Using Synthetic Earth Gravity Models. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

    Google Scholar 

  • Bagherbandi M., 2011. An isostatic Earth crustal model and its application. Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

    Google Scholar 

  • Claessens S.J., 2002. A Synthetic Earth Model (Analysis, Implementation, Validation and Application). M.Sc. Thesis, Department of Physical, Geometrical and Space Geodesy, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • Featherstone W.E., 2002. Tests of two forms of Stokes’ integral using a synthetic gravity field based on spherical harmonics. In: Grafarend E.W., Krumm F.W. and Schwarze V.S. (Eds.), Geodesy — The Challenge for the Third Millenium. Springer-Verlag, Berlin, Germany, 163–171.

    Google Scholar 

  • Gruber C., Novák P. and Sebera J., 2011. FFT-based higher-performance spherical harmonic transformation. Stud. Geophys. Geod., 55, 489–500.

    Article  Google Scholar 

  • Haagmans R., 2000. A synthetic earth for use in geodesy. J. Geodesy, 74, 503–511.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., San Francisco and London.

    Google Scholar 

  • Holmes S.A., 2002. High-Degree Spherical Harmonic Synthesis: New Algorithms and Applications. Ph.D. Thesis, Department of Spatial Sciences, Curtin University of Technology, Curtin, Australia.

  • Holmes S.A. and Featherstone W., 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J. Geodesy, 76, 279–299.

    Article  Google Scholar 

  • Kaban M.K., Schwintzer P. and Tikhotsky S.A., 1999. A global isostatic gravity model of the Earth. Geophys. J. Int., 136, 519–536.

    Article  Google Scholar 

  • Kaban M., Schwintzer P. and Reigber Ch., 2004. A new isostatic model of the lithosphere and gravity field. J. Geodesy, 78, 368–385.

    Article  Google Scholar 

  • Kuhn M. and Featherstone W., 2003a, On the construction of a synthetic Earth gravity model (SEGM). In: Tziavos I.N. (Ed.), Gravity and Geoid 2002. 3rd Meeting of the Gravity and Geoid Commission. ZITI Editions, Thessaloniki, Greece (ISBN: 960-431-852-7), 189–194.

    Google Scholar 

  • Kuhn M. and Featherstone W., 2003b. Curtin Synthetic Earth Gravity Model (Version I). www.cage.curtin.edu.au/~kuhnm/crutinSEGM.html.

  • Kuhn M. and Featherstone W., 2005. Construction of a synthetic Earth gravity model by forward gravity modelling. In: Sansò F. (Ed.), A Window on the Future of Geodesy. International Association of Geodesy Symposia, 128, Springer-Verlag, Berlin, Heidelberg, New York, 350–355.

    Chapter  Google Scholar 

  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report TP-1998-206861, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, USA.

    Google Scholar 

  • Martinec Z., 1993. A model of compensation of topographic masses. Surv. Geophys., 14, 525–535.

    Article  Google Scholar 

  • Moritz H., 1990. The Figure of the Earth. H. Wichmann, Karlsruhe, Germany.

    Google Scholar 

  • Novák P., Vaníček P., Veronneau M., Holmes S.A. and Featherstone W., 2001. On the accuracy of modified Stokes’ integration in high-frequency gravimetric geoid determination. J. Geodesy, 74, 644–654.

    Article  Google Scholar 

  • Oppenheim A.V., Willsky A.S. and Young I.T., 1983. Signals ans Sytems. Prentice-Hall International, Upper Saddle River, NJ.

    Google Scholar 

  • Pail R., 2000. Synthetic Global Gravity Model for Planetary Bodies and Applications in Satellite Gravity Gradiometry. Ph.D. Thesis. Mitteilungen der geodi adischen Institute der Technischen Universität Graz, Folge 85, Austria.

    Google Scholar 

  • Pavlis N., Factor K., Holmes S.A. and Simon A., 2007. Terrain-Related Gravimetric Quantities Computed for the Next EGM. http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/NPavlis&al_S8_Revised111606.pdf.

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. http://www.massentransporte.de/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf.

  • Rummel R., Rapp R.H., Sünkel H. and Tscherning C.C., 1988. Comparisons of Global Topographicisostatic Models to the Earth’s Observed Gravity Field. Report No.388, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.

    Google Scholar 

  • Sanso F., Barzaghi R. and Tscherning C.C., 1986. Choice of norm for the density distribution of the Earth. Geophys. J. R. Astr. Soc., 87, 123–141.

    Article  Google Scholar 

  • Sjöberg L.E., 1998a. The exterior Airy/Heiskanen topographic-isostatic gravity potential anomaly and the effect of analytical continuation in Stokes’ formula. J. Geodesy, 72, 654–662.

    Article  Google Scholar 

  • Sjöberg L.E., 1998b. On the Pratt and Airy models of isostatic geoid undulations. J. Geodyn., 26, 137–147.

    Article  Google Scholar 

  • Sjöberg L.E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int., 179, 1527–1536, DOI: 10.1111/j.1365-246X.2009.04397.x.

    Article  Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2011. A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys., 59, 502–525.

    Article  Google Scholar 

  • Sünkel H., 1981. Point Mass Models and the Anomalous Gravitational Field. Report No.328. Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.

  • Sünkel H., 1985. An Isostatic Earth Model. Report No.367. Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.

    Google Scholar 

  • Tsoulis D., 2001. A comparison between the Airy/Heiskanen and the Pratt/Hayford isostatic models for the computation of potential harmonic coefficients. J. Geodesy, 74, 637–643.

    Article  Google Scholar 

  • Tziavos I.N., 1996. Comparisons of spectral techniques for geoid computations over large regions. J. Geodesy, 70, 357–373.

    Google Scholar 

  • Vening Meinesz F.A., 1931. Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur. Bull. Geod., 29, 33–51 (in French).

    Article  Google Scholar 

  • Vermeer M., 1995. Mass point geopotential modelling using fast spectral techniques; historical overview, toolbox description, numerical experiment. Manuscripta Geodaetica, 20, 362–378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagherbandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagherbandi, M., Sjöberg, L.E. A synthetic Earth gravity model based on a topographic-isostatic model. Stud Geophys Geod 56, 935–955 (2012). https://doi.org/10.1007/s11200-011-9045-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-9045-1

Keywords

Navigation