Skip to main content
Log in

A concept for the estimation of high-degree gravity field models in a high performance computing environment

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The determination of global gravity field models by the combination of complementary observations within a joint adjustment is a computationally expensive task. Global gravity field models are typically parameterized by a finite series of spherical harmonic base functions. The effort to compute the set of coefficients depends on the one hand on the maximum degree of the spherical harmonic expansion and on the other hand on the number of observations and their stochastic characteristics. The main result of this contribution is a computation scheme for the rigorous (i.e. avoiding computationally motivated approximations) estimation of high-degree gravity models. A conjugate gradient based iterative solver is implemented in a high performance computing environment allowing to estimate hundreds of thousands to millions of unknown parameters. To perform the computations in a reasonable time, the solver is designed to operate on thousands of computing cores. A flexible design is considered to process an arbitrary number of observation groups. For each group a variance component can be estimated to derive a data adaptive weighting factor. The combined solution results from the weighted joint inversion of all observation groups, which might be provided in terms of preprocessed normal equations (e.g. from satellite gravity field missions like GRACE or GOCE) or in terms of observations like datasets of point-wise terrestrial gravity field information. A small-scale closed-loop simulation (250000 unknowns, spherical harmonic degree and order 500) for the estimation of the Earth’s gravity field serves as proof of concept. Normal equations derived by observations from three satellite missions and 15 datasets of point-wise measurements (gravity anomalies and along-track altimetry) are combined in the gravity field adjustment. The simulation study i) verifies the implementation, ii) analyzes the computational effort of the individual steps involved and iii) leads to the main conclusion that the rigorous least-squares solution can be determined in a reasonable amount of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkhatib H., 2007. On Monte Carlo Methods with Applications to the Current Satellite Gravity Missions. Ph.D. Thesis, Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany.

    Google Scholar 

  • Baboulin M., Giraud L., Gratton S. and Langou J., 2009. Parallel tools for solving incremental dense least squares problems. Application to space geodesy. J. Algorithms Comput. Technol., 19, 413–433.

    Google Scholar 

  • Balaji P., Bland W., Dinan J., Goodell D., Gropp W., Latham R., Pena A. and Thakur R., 2013. MPICH User’s Guide. 3rd Edn. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL.

    Google Scholar 

  • Baur O., 2009. Tailored least-squares solvers implementation for high-performance gravity field research. Comput. Geosc., 35, 548–556, DOI: 10.1016/j.cageo.2008.09.004.

    Article  Google Scholar 

  • Baur O., Austen G. and Kusche J., 2008. Efficient GOCE satellite gravity field recovery based on least-squares using QR decomposition. J. Geodesy, 82, 207–221, DOI: 10.1007/s00190-007-0171-z.

    Article  Google Scholar 

  • Blackford L.S., Choi J., Cleary A., D’Azevedo E., Demmel J., Dhillon I., Dongarra J., Hammarling S., Henry G., Petitet A., Stanley K., Walker D. and Whaley R., 1997. ScaLAPACK Users Guide. 2nd Edition. SIAM, Philadelphia, PA.

    Book  Google Scholar 

  • Boxhammer C., 2006. Effiziente numerische Verfahren zur sphärischen harmonischen Analyse von Satellitendaten. Ph.D. Thesis, Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany (in German).

    Google Scholar 

  • Boxhammer C. and Schuh W.D., 2006. GOCE gravity field modeling: computational aspects — free kite numbering scheme. In: Flury J., Rummel R., Reigber C., Rothacher M., Boedecker G. and Schreiber U. (Eds.), Observation of the Earth System from Space. Springer Verlag, Berlin, Heidelberg, Germany, 209–224, DOI: 10.1007/3-540-29522-4_15.

    Chapter  Google Scholar 

  • Brockmann J.M. and Schuh W.D., 2010. Fast variance component estimation in GOCE data processing. In: Mertikas S.P. (Ed.), Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia 135, Springer Verlag, Berlin, Heidelberg, Germany, 185–193, DOI: 10.1007/978-3-642-10634-725.

    Chapter  Google Scholar 

  • Brockmann J.M., Kargoll B., Krasbutter I., Schuh W.D. and Wermuth M., 2010. GOCE data analysis: From calibrated measurements to the global Earth gravity field. In: Flechtner F.M., Gruber Th., Güntner A., Mandea M., Rothacher M., Schöne T. and Wickert J. (Eds.), System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences, Springer Verlag, Berlin, Heidelberg, Germany, 213–229, DOI: 10.1007/978-3-642-10228-8_17.

    Chapter  Google Scholar 

  • Brockmann J.M., Roese-Koerner L. and Schuh W.D., 2013. Use of high performance computing for the rigorous estimation of very high degree spherical harmonic gravity field models. In: Marti U. (Ed.), Gravity Geoid and Height Systems. International Association of Geodesy Symposia 141, Springer Verlag, Berlin, Heidelberg, Germany (in print).

    Google Scholar 

  • Bruinsma S., Förste C., Abrikosov O., Marty J.C., Rio M.H., Mulet S. and Bonvalot S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett., 40, 3607–3612, DOI: 10.1002/grl.50716.

    Article  Google Scholar 

  • Dongarra J.J. and Whaley R.C., 1997. A User’s Guide to the BLACS v1.1. Technical Report 94, LAPACK Working Note (http://www.netlib.org/lapack/lawnspdf/lawn94.pdf).

    Google Scholar 

  • ESA, 1999. The four Candidate Earth Explorer Core Missions — Gravity Field and Steady-State Ocean Circulation Mission. ESA Report SP-1233(1), ESA Publications Division, c/o ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Farahani H., Ditmar P., Klees R., Liu X., Zhao Q. and Guo J., 2013. The static gravity field model DGM-1S from GRACE and GOCE data: computation, validation and an analysis of GOCE missions added value. J. Geodesy, 87, 843–867, DOI 10.1007/s00190-013-0650-3.

    Article  Google Scholar 

  • Fecher T., Pail R. and Gruber T., 2011. Global gravity field determination by combining GOCE and complementary data. In: Ouwehand L. (Ed.), Proceedings of the 4th International GOCE User Workshop. ESA Publication SP-696, ESA Publications Division, c/o ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Förste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., Knig R., Neumayer H., Biancale R., Lemoine J.M., Bruinsma S., Loyer S., Barthelmes F. and Esselborn S., 2008. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J. Geodesy, 82, 331–346, DOI: 10.1007/s00190-007-0183-8.

    Article  Google Scholar 

  • Förste C., Bruinsma S., Flechtner F., Marty J., Lemoine J.M., Dahle C., Abrikosov O., Neumayer H., Biancale R., Barthelmes F. and Balmino G., 2012. A preliminary update of the direct approach GOCE processing and a new release of EIGEN-6C. San Francisco, no. 0923 in AGU Fall Meeting (http://icgem.gfz-potsdam.de/ICGEM/documents/Foerste-et-al-AGU_2012.pdf).

    Google Scholar 

  • Förstner W., 1979. Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allgemeine Vermessungsnachrichten, 11, 446–453 (in german).

    Google Scholar 

  • Gabriel E., Fagg G., Bosilca G., Angskun T., Dongarra J., Squyres J., Sahay V., Kambadur P., Barrett B., Lumsdaine A., Castain R., Daniel D., Graham R. and Woodall T., 2004. Open MPI: Goals, concept, and design of a next generation MPI implementation. In: Kranzlmüller D., Kacsuk P. and Dongarra J. (Eds.), Recent Advances in Parallel Virtual Machine and Message Passing Interface. Lecture Notes in Computer Science 3241, Springer Verlag, Berlin, Germany, 97–104, DOI: DOI:10.1007/978-3-540-30218-6_19.

    Chapter  Google Scholar 

  • Gunter B.C. and Van De Geijn R.A., 2005. Parallel out-of-core computation and updating of the QR factorization. ACM Trans. Math. Softw., 31, 60–78, DOI: 10.1145/1055531.1055534.

    Article  Google Scholar 

  • Heiskanen W. and Moritz H., 1993. Physical Geodesy, Reprint Edition. Institute of Physical Geodesy, Technical University, Graz.

    Google Scholar 

  • Hestenes M. and Stiefel E., 1952. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–436.

    Article  Google Scholar 

  • Holmes S.A. and Featherstone W.E., 2002. A unified approach to the clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions. J. Geodesy, 76, 279–299, DOI: 10.1007/s00190-002-0216-2.

    Article  Google Scholar 

  • Hutchinson M., 1990. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat., 19, 433–450, DOI: 10.1080/03610919008812866.

    Article  Google Scholar 

  • Ilk K.H., Kusche J. and Rudolph S., 2002. A contribution to data combination in ill-posed downward continuation problems. J. Geodyn., 33, 75–99, DOI: 10.1016/S0264-3707(01)00056-4.

    Article  Google Scholar 

  • Koch K., 1999. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd Edition. Springer Verlag, Berlin, Heidelberg, Germany.

    Book  Google Scholar 

  • Koch K. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J. Geodesy, 76, 259–268, DOI: 10.1007/s00190-002-0245-x.

    Article  Google Scholar 

  • Konopliv A.S., Park R.S., Yuan D.N., Asmar S.W., Watkins M.M., Williams J.G., Fahnestock E., Kruizinga G., Paik M., Strekalov D., Harvey N., Smith D.E. and Zuber M.T., 2013. The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J. Geophys. Res. Planets, 118, 1415–1434, DOI: 10.1002/jgre.20097.

    Article  Google Scholar 

  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report TP-1998-206861, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, USA.

    Google Scholar 

  • Lemoine F.G., Goossens S., Sabaka T.J., Nicholas J.B., Mazarico E., Rowlands D.D., Loomis B.D., Chinn D.S., Caprette D.S., Neumann G.A., Smith D.E. and Zuber M.T., 2013. High-degree gravity models from GRAIL primary mission data. J. Geophys. Res. Planets, 118, 1676–1698, DOI: 10.1002/jgre.20118.

    Google Scholar 

  • MPI-Forum, 2009. MPI: A Message-Passing Interface Standard 2.2. http://www.mpiforum.org/docs/mpi-2.2/mpi22-report.pdf.

    Google Scholar 

  • Pail R. and Plank G., 2003. Comparison of numerical solution strategies for gravity field recovery from GOCE SGG observations implemented on a parallel platform. Adv. Geosci., 1, 39–45.

    Article  Google Scholar 

  • Pail R., Goiginger H., Schuh W.D., Höck E., Brockmann J.M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jäggi A. and Rieser D., 2010. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37,L20, 314, DOI: 10.1029/2010GL044906.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.

    Google Scholar 

  • Reigber C., Lühr H. and Schwintzer P., 2002. Champ mission status. Adv. Space Res., 30, 129–134, DOI: 10.1016/S0273-1177(02)00276-4.

    Article  Google Scholar 

  • Ries J.C., Bettadpur S., Poole S. and Richter T., 2011. Mean background gravity fields for GRACE processing. GRACE Science Team Meeting, Austin, TX (ftp://ftp.csr.utexas.edu/pub/grace/GIF48/GSTM2011_Ries_etal.pdf).

    Google Scholar 

  • Rummel R., Yi W. and Stummer C., 2011. GOCE gravitational gradiometry. J. Geodesy, 85, 777–790, DOI: 10.1007/s00190-011-0500-0.

    Article  Google Scholar 

  • Schuh W.D., Brockmann J.M., Kargoll B., Krasbutter I. and Pail R., 2010. Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium, SP-686, ESA Communications, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Schuh W.D., 1996. Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilungen der geodätischen Institute der Technischen Universität Graz, Vol 81. Technical Univcersity Graz, Graz, Austria (ftp://skylab.itg.uni-bonn.de/schuh/Separata/schuh_96.pdf).

    Google Scholar 

  • Schwarz H., 1970. Die Methode der konjugierten Gradienten in der Ausgleichsrechnung. Zeitschrift für Vermessungswesen, 95, 130–140 (in German).

    Google Scholar 

  • Schwintzer P., Reigber C., Bode A., Kang Z., Zhu S.Y., Massmann F.H., Biancale R., Balmino G., Lemoine J.M., Moynot B., Marty J.C., Barlier F. and Boudon Y., 1997. Long-wavelength global gravity field models: GRIM4-s4, GRIM4-c4. J. Geodesy, 71, 189–208, DOI: 10.1007/s001900050087.

    Article  Google Scholar 

  • Sidani M. and Harrod B., 1996. Parallel Matrix Distributions: Have We Been Doing It All Right? Technical Report 116, LAPACK Working Note, (http://www.netlib.org/lapack/lawnspdf/lawn116.pdf).

  • Tapley B., Bettadpur S., Ries J., Thompson P. and Watkins M., 2004. GRACE Measurements of mass variability in the Earth system. Science, 305, 503–505, DOI: 10.1126/science.1099192.

    Article  Google Scholar 

  • Xie J., 2005. Implementation of Parallel Least-Squares Algorithms for Gravity Field Estimation. Report 474, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Zuber M.T., Smith D.E., Watkins M.M., Asmar S.W., Konopliv A.S., Lemoine F.G., Melosh H.J., Neumann G.A., Phillips R.J., Solomon S.C., Wieczorek M.A., Williams J.G., Goossens S.J., Kruizinga G., Mazarico E., Park R.S. and Yuan D.N., 2013. Gravity field of the moon from the Gravity Recovery And Interior Laboratory (GRAIL) mission. Science, 339, 668–671, DOI: 10.1126/science.1231507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Martin Brockmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockmann, J.M., Roese-Koerner, L. & Schuh, WD. A concept for the estimation of high-degree gravity field models in a high performance computing environment. Stud Geophys Geod 58, 571–594 (2014). https://doi.org/10.1007/s11200-013-1246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-1246-3

Keywords

Navigation