Skip to main content
Log in

A robust weighted total least squares algorithm and its geodetic applications

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Total least squares (TLS) can solve the issue of parameter estimation in the errors-invariables (EIV) model, however, the estimated parameters are affected or even severely distorted when the observation vector and coefficient matrix are contaminated by gross errors. Currently, the use of existing robust TLS (RTLS) methods for the EIV model is unreasonable. Original residuals are directly used in most studies to construct the weight factor function, thus the robustness for the structure space is not considered. In this study, a robust weighted total least squares (RWTLS) algorithm for the partial EIV model is proposed based on Newton-Gauss method and the equivalent weight principle of general robust estimation. The algorithm utilizes the standardized residuals to construct the weight factor function and employs the median method to obtain a robust estimator of the variance component. Therefore, the algorithm possesses good robustness in both the observation and structure spaces. To obtain standardized residuals, we use the linearly approximate cofactor propagation law for deriving the expression of the cofactor matrix of WTLS residuals. The iterative procedure and precision assessment approach for RWTLS are presented. Finally, the robustness of RWTLS method is verified by two experiments involving line fitting and plane coordinate transformation. The results show that RWTLS algorithm possesses better robustness than the general robust estimation and the robust total least squares algorithm directly constructed with original residuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri-Simkooei A.R., 2003. Formulation of L1 norm minimization in Gauss-Markov models. J. Surv. Eng.-ASCE, 129, 37–43.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., 2013. Application of least squares variance component estimation to errorsin- variables models. J. Geodesy, 87, 935–944.

    Article  Google Scholar 

  • Amiri-Simkooei A. and Jazaeri S., 2012. Weighted total least squares formulated by standard least squares theory. J. Geod. Sci., 2, 113–124.

    Google Scholar 

  • Amiri-Simkooei A. and Jazaeri S., 2013. Data-snooping procedure applied to errors-in-variables models. Stud. Geophys. Geod., 57, 426–441.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., Zangeneh-Nejad F., Asgari J. and Jazaeri S., 2014. Estimation of straight line parameters with fully correlated coordinates. Measurement, 48, 378–386.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., Mortazavi S. and Asgari J., 2015. Weighted total least squares applied to mixed observation model. Surv. Rev., DOI: 10.1179/1752270615Y.0000000031.

    Google Scholar 

  • Baarda W., 1968. A Testing Procedure for Use in Geodetic Networks. Publications on Geodesy, New Series, Vol. 2, No. 5. Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Fang X., 2013. Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. J. Geodesy, 87, 733–749.

    Article  Google Scholar 

  • Fang X., 2014a. On non-combinatorial weighted total least squares with inequality constraints. J. Geodesy, 88, 805–816.

    Article  Google Scholar 

  • Fang X., 2014b. A structured and constrained total least-squares solution with cross-covariances. Stud. Geophys. Geod., 58, 1–16.

    Article  Google Scholar 

  • Fang X., 2014c. A total least squares solution for geodetic datum transformations. Acta Geod. Geophys., 49, 189–207.

    Article  Google Scholar 

  • Fang X., 2015. Weighted total least-squares with constraints: a universal formula for geodetic symmetrical transformations. J. Geodesy, 89, 459–469.

    Article  Google Scholar 

  • Felus Y.A., 2004. Application of total least squares for spatial point process analysis. J. Surv. Eng.-ASCE, 130, 126–133.

    Article  Google Scholar 

  • Felus Y.A. and Burtch R.C., 2009. On symmetrical three-dimensional datum conversion. GPS Solut., 13, 65–74.

    Article  Google Scholar 

  • Fekri M. and Ruiz-Gazen A., 2004. Robust weighted orthogonal regression in the errors-in-variables model. J. Multivariate Anal., 88, 89–108.

    Article  Google Scholar 

  • Golub G.H. and van Loan C.F., 1980. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17, 883–893.

    Article  Google Scholar 

  • Guo J.F., 2007. Theory of Model Errors and Its Applications in GPS Data Processing. Ph.D. Thesis. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China (in Chinese).

    Google Scholar 

  • Guo J.F., Ou J.K. and Wang H.T., 2010. Robust estimation for correlated observations: two local sensitivity-based downweighting strategies. J. Geodesy, 84, 243–250.

    Article  Google Scholar 

  • Huber P.J., 1981. Robust Statistics. John Wiley and Sons, New York.

    Book  Google Scholar 

  • Kelly G., 1984. The influence function in the errors in variables problem. Ann. Stat., 12, 87–100.

    Article  Google Scholar 

  • Lu J., Chen Y., Li B. and Fang X., 2014. Robust total least squares with reweighting iteration for three-dimensional similarity transformation. Surv. Rev., 46, 28–36.

    Article  Google Scholar 

  • Mahboub V., 2012. On weighted total least-squares for geodetic transformation. J. Geodesy, 86, 359–367.

    Article  Google Scholar 

  • Mahboub V., 2014. Variance component estimation in errors-invariables models and a rigorous total least-squares approach. Stud. Geophys. Geod., 58, 17–40.

    Article  Google Scholar 

  • Mahboub V., Amiri-Simkooei A.R. and Sharifi M.A., 2013. Iteratively reweighted total least squares: a robust estimation in errors-in-variables models. Surv. Rev., 45, 92–99.

    Google Scholar 

  • Neitzel F., 2010. Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J. Geodesy, 84, 751–762.

    Article  Google Scholar 

  • Ou J.K., 1999. A new method to detect gross errors–quasi-accurate detection method. Chinese Sci. Bull., 44, 1777–1781.

    Article  Google Scholar 

  • Rousseeuw P.J. and Leroy A.M., 1987. Robust Regression and Outlier Detection. John Wiley and Sons, New York

    Book  Google Scholar 

  • Schaffrin B. and Felus Y., 2008. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J. Geodesy, 82, 373–383.

    Google Scholar 

  • Schaffrin B. and Felus Y., 2009. An algorithmic approach to the total least squares problem with linear and quadratic constraints. Stud. Geophys. Geod., 53, 1–16.

    Article  Google Scholar 

  • Schaffrin B. and Wieser A., 2008. On weighted total least-squares adjustment for linear regression. J. Geodesy, 82, 415–421.

    Article  Google Scholar 

  • Schaffrin B., Lee I., Felus Y, and Choi Y., 2006. Total least-squares for geodetic straight-line and plane adjustment. Boll. Geod. Sci. Aff., 65, 141–168.

    Google Scholar 

  • Shen Y.Z., Li B.F. and Chen Y., 2011. An iterative solution of weighted total least squares adjustment. J. Geodesy, 85, 229–238.

    Article  Google Scholar 

  • Snow K., 2012. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Prior Information. Ph.D. Thesis. School of Earth Science, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Tao Y.Q., Gao J.X. and Yao Y.F., 2014. TLS algorithm for GPS height fitting based on robust estimation. Surv. Rev., 46, 184–188

    Article  Google Scholar 

  • Teunissen P.J.G., 1984. A note on the use of Gauss’ formulas in nonlinear geodetic adjustment. Statistics and Decisions, 2, 455–466.

    Google Scholar 

  • Teunissen P.J.G., 1985. The Geometry of Geodetic Inverse Linear Mapping and Nonlinear Adjustment. Publications on Geodesy, New Series, Vol. 8, No 1. The Netherland Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Teunissen P.J.G., 1988. The non-linear 2D symmetric Helmert transformation: an exact non-linear least-squares solution. J. Geodesy, 62, 1–15.

    Google Scholar 

  • Teunissen P.J.G., 1990. Nonlinear least squares. Manuscr. Geod., 15, 137–150.

    Google Scholar 

  • Thomson D.B., 1976. Combination of Geodetic Networks. Department of Surveying Engineering, University of New Brunswick, Fredericton, Canada.

    Google Scholar 

  • Xu P.L., 2005. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J. Geodesy, 79, 146–159.

    Article  Google Scholar 

  • Xu P.L. and Liu J.N., 2014. Variance components in errors-in-variables models: estimability, stability and bias analysis. J. Geodesy, 88, 719–734.

    Article  Google Scholar 

  • Xu P.L., Liu J.N. and Shi C., 2012. Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J. Geodesy, 86, 661–675.

    Article  Google Scholar 

  • Yang Y., 1994. Robust estimation for dependent observations. Manuscr. Geod., 19, 10–17.

    Google Scholar 

  • Yang Y., Song L. and Xu T., 2002a. Robust estimation for correlated observations based on bifactor equivalent weights. J. Geodesy, 76, 353–358.

    Article  Google Scholar 

  • Yang Y., Song L. and Xu T., 2002b. Robust parameter estimation for geodetic correlated observations. Acta Geod. Cartograph. Sinica, 31, 95–99.

    Google Scholar 

  • Zhang S.L., Tong X.H. and Zhang K., 2013. A solution to EIV model with inequality constraints and its geodetic applications. J. Geodesy, 87, 23–28.

    Article  Google Scholar 

  • Zhou J.W., Huang Y.C., Yang Y.X. and Ou J.K., 1997. Robust Least Squares Method. Huazhong University of Science and Technology Press, Wuhan, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, J. & Liu, C. A robust weighted total least squares algorithm and its geodetic applications. Stud Geophys Geod 60, 177–194 (2016). https://doi.org/10.1007/s11200-015-0916-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0916-8

Keywords

Navigation