Skip to main content
Log in

Nonlinear Force-Free Reconstruction of the Global Solar Magnetic Field: Methodology

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday’s equation, give rise to a respective normal-field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modeled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal-field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition – the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time that a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but it depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131 – 149. doi: 10.1007/BF00145734 .

    Article  ADS  Google Scholar 

  • Aly, J.J.: 1987, On the uniqueness of the determination of the coronal potential magnetic field from line-of-sight boundary conditions. Solar Phys. 111, 287 – 296. doi: 10.1007/BF00148521 .

    Article  ADS  Google Scholar 

  • Berenger, J.: 1994, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185 – 200. doi: 10.1006/jcph.1994.1159 .

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Berenger, J.: 1996, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363 – 379. doi: 10.1006/jcph.1996.0181 .

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Georgoulis, M.K., LaBonte, B.J.: 2004, Vertical Lorentz force and cross-field currents in the photospheric magnetic fields of solar active regions. Astrophys. J. 615, 1029 – 1041. doi: 10.1086/424501 .

    Article  ADS  Google Scholar 

  • Gruzinov, A.: 1999, Stability in force-free electrodynamics. ArXiv Astrophysics e-prints.

  • Henney, C.J., Keller, C.U., Harvey, J.W., Georgoulis, M.K., Hadder, N.L., Norton, A.A., Raouafi, N., Toussaint, R.M.: 2009, SOLIS vector spectromagnetograph: status and science. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5, ASP Conf. Ser. 405, 47.

    Google Scholar 

  • Kalapotharakos, C., Contopoulos, I.: 2009, Three-dimensional numerical simulations of the pulsar magnetosphere: preliminary results. Astron. Astrophys. 496, 495 – 502. doi: 10.1051/0004-6361:200810281 .

    Article  ADS  MATH  Google Scholar 

  • Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski, A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. J. Geophys. Res. 104, 9809 – 9830. doi: 10.1029/1998JA900159 .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Li, Y., Arge, C.N., Gazis, P.R., Ulrich, R.: 2002, Solar cycle changes in coronal holes and space weather cycles. J. Geophys. Res. 107, 1154. doi: 10.1029/2001JA007550 .

    Article  Google Scholar 

  • Metcalf, T.R., Jiao, L., McClymont, A.N., Canfiel, R.C., Uitenbroek, H.: 1995, Is the solar chromospheric magnetic field force-free? Astrophys. J. 439, 474 – 481. doi: 10.1086/175188 .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. 106, 15889 – 15902. doi: 10.1029/2000JA000121 .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510 – 1516. doi: 10.1086/508565 .

    Article  ADS  Google Scholar 

  • Roumeliotis, G.: 1996, The “stress-and-relax” method for reconstructing the coronal magnetic field from vector magnetograph data. Astrophys. J. 473, 1095 – 1103. doi: 10.1086/178219 .

    Article  ADS  Google Scholar 

  • Roussev, I.I., Gombosi, T.I., Sokolov, I.V., Velli, M., Manchester, W. IV, DeZeeuw, D.L., Liewer, P., Tóth, G., Luhmann, J.: 2003, A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. Lett. 595, 57 – 61. doi: 10.1086/378878 .

    Article  ADS  Google Scholar 

  • Ruan, P., Wiegelmann, T., Inhester, B., Neukirch, T., Solanki, S.K., Feng, L.: 2008, A first step in reconstructing the solar corona self-consistently with a magnetohydrostatic model during solar activity minimum. Astron. Astrophys. 481, 827 – 834. doi: 10.1051/0004-6361:20078834 .

    Article  ADS  MATH  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455. doi: 10.1007/BF00146478 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 –188. doi: 10.1007/BF00733429 .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165 – 200. doi: 10.1023/A:1022908504100 .

    Article  ADS  Google Scholar 

  • Spitkovsky, A.: 2006, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, 51 – 54. doi: 10.1086/507518 .

    Article  ADS  Google Scholar 

  • Tadesse, T., Wiegelmann, T., Inhester, B.: 2009, Nonlinear force-free coronal magnetic field modelling and preprocessing of vector magnetograms in spherical geometry. Astron. Astrophys. 508, 421 – 432. doi: 10.1051/0004-6361/200912529 .

    Article  ADS  MATH  Google Scholar 

  • Valori, G., Kliem, B., Keppens, R.: 2005, Extrapolation of a nonlinear force-free field containing a highly twisted magnetic loop. Astron. Astrophys. 433, 335 – 347. doi: 10.1051/0004-6361:20042008 .

    Article  ADS  MATH  Google Scholar 

  • Wang, Y., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310 – 319. doi: 10.1086/171430 .

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87 – 108. doi: 10.1023/B:SOLA.0000021799.39465.36 .

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2007, Computing nonlinear force-free coronal magnetic fields in spherical geometry. Solar Phys. 240, 227 – 239. doi: 10.1007/s11207-006-0266-3 .

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Neukirch, T., Ruan, P., Inhester, B.: 2007, Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry. Astron. Astrophys. 475, 701 – 706. doi: 10.1051/0004-6361:20078244 .

    Article  ADS  Google Scholar 

  • Yee, K.: 1966, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 – 307. doi: 10.1109/TAP.1966.1138693 .

    Article  ADS  MATH  Google Scholar 

  • Zhou, G., Wang, J., Wang, Y., Zhang, Y.: 2007, Quasi-simultaneous flux emergence in the events of October November, 2003. Solar Phys. 244, 13 – 24. doi: 10.1007/s11207-007-9032-4 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Contopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contopoulos, I., Kalapotharakos, C. & Georgoulis, M.K. Nonlinear Force-Free Reconstruction of the Global Solar Magnetic Field: Methodology. Sol Phys 269, 351–365 (2011). https://doi.org/10.1007/s11207-011-9713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9713-x

Keywords

Navigation