Skip to main content
Log in

Solar Sources of Interplanetary Coronal Mass Ejections During the Solar Cycle 23/24 Minimum

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤ 20) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. 10.1086/306563 .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D.: 1995, The Large Angle Spectroscopic Coronagraph. Solar Phys. 162, 357. 10.1007/BF00733434 .

    Article  ADS  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102(A4), 7075. 10.1029/97JA00149 .

    Article  ADS  Google Scholar 

  • Chen, J., Howard, R.A., Brueckner, G.E., Santoro, R., Krall, J., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M.: 1997, Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13. Astrophys. J. Lett. 490, L191. 10.1086/311029 .

    Article  ADS  Google Scholar 

  • Dasso, S., Nakwacki, M.S., Demoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. 10.1007/s11207-007-9034-2 .

    Article  ADS  Google Scholar 

  • Delaboudiniére, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. 10.1007/BF00733432 .

    Article  ADS  Google Scholar 

  • Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, The Solar Mass Ejection Imager (SMEI). Solar Phys. 217, 319. 10.1023/B:SOLA.0000006903.75671.49 .

    Article  ADS  Google Scholar 

  • Feng, H.Q., Wu, D.J., Lin, C.C., Chao, J.K., Lee, L.C., Lyu, L.H.: 2008, Interplanetary small- and intermediate-sized magnetic flux ropes during 1995 – 2005. J. Geophys. Res. 113, A12105. 10.1029/2008JA013103 .

    Article  ADS  Google Scholar 

  • Gomez-Herrero, R., Malandraki, O.E., Dresing, N., Kilpua, K., Heber, B., Klassen, A., Muller-Mellin, R., Wimmer-Schweingruber, R.F.: 2011, Spatial and temporal variations of CIRs: multi-point observations by STEREO. J. Atmos. Solar-Terr. Phys. 73, 551. 10.1016/j.jastp.2010.11.017 .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Coronal mass ejections of cycle 23. J. Astrophys. Astron. 27, 243.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1997, In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. 99, AGU, Washington, 245.

    Chapter  Google Scholar 

  • Gosling, J.T., McComas, D.J., Phillips, J.L., Bame, S.J.: 1991, Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831.

    Article  ADS  Google Scholar 

  • Gurman, J.B., Thompson, B.J., Newmark, J.A., Deforest Craig, E.: 1998, New images of the solar corona. In: Donahue, R.A., Bookbinder, J.A. (eds.) The Tenth Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, CS-154, Astron. Soc. Pacific, San Francisco, 329.

  • Harrison, R.A., Davis, C.J., Eyles, C.J.: 2005, The STEREO heliospheric imager: how to detect CMEs in the heliosphere. Adv. Space Res. 36, 1512. 10.1016/j.asr.2005.01.024 .

    Article  ADS  Google Scholar 

  • Harrison, R.A., Davies, J.A., Rouillard, A.P., Davis, C.J., Eyles, C.J., Bewsher, D., Crothers, S.R., Howard, R.A., Sheeley, N.R., Vourlidas, A., Webb, D.F., Brown, D.S., Dorrian, G.D.: 2009, Two years of the STEREO heliospheric imagers. Solar Phys. 256, 219. 10.1007/s11207-009-9352-7 .

    Article  ADS  Google Scholar 

  • Howard, R.A., Michels, D.J., Sheeley, N.R. Jr., Koomen, M.J.: 1982, The observation of a coronal transient directed at earth. Astrophys. J. 263, L101. 10.1086/183932 .

    Article  ADS  Google Scholar 

  • Howard, T.A., Nandy, D., Koepke, A.C.: 2008a, Kinematic properties of solar coronal mass ejections: correction for projection effects in spacecraft coronagraph measurements. J. Geophys. Res. 113, A01104. 10.1029/2007JA012500 .

    ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Dese, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., Mc-Mullin, D., Carter, T.: 2008b, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 36, 67. 10.1007/s11214-008-9341-4 .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Cliver, E.W.: 2001, J. Geophys. Res. 106, 25199. 10.1029/2000JA904026 .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98, 13177. 10.1029/93JA00157 .

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Sawyer, C.B., House, L., Illing, R.M.E., Wagner, W.J.: 1984, Coronal mass ejections observed during the solar maximum mission – latitude distribution and rate of occurrence. J. Geophys. Res. 89, 2639. 10.1029/JA089iA05p02639 .

    Article  ADS  Google Scholar 

  • Huttunen, K.E.J., Koskinen, H.E.J., Schwenn, R.: 2002, Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 107, 1121. 10.1029/2001JA900171 .

    Article  Google Scholar 

  • Illing, R.M.E., Hundhausen, A.J.: 1985, Observation of a coronal transient from 1.2 to 6 solar radii. J. Geophys. Res. 90, 275. 10.1029/JA090iA01p00275 .

    Article  ADS  Google Scholar 

  • Inhester, B.: 2006, Stereoscopy basics for the STEREO mission. arXiv:astro-ph/0612649 .

  • Innes, D.E., Genetelli, A., Attie, R., Potts, H.E.: 2009, Quiet Sun mini-coronal mass ejections activated by supergranular flows. Astron. Astrophys. 495, 319. 10.1051/0004-6361:200811011 .

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G.: 2011, Comparing solar minimum 23/24 with Historical solar wind records at 1 AU. Solar Phys. 10.1007/s11207-011-9737-2 .

    Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995. Solar Phys. 239, 393. 2004. 10.1007/s11207-006-0133-2 .

    Article  ADS  Google Scholar 

  • Kaiser, M., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2007, The STEREO mission: an introduction. Space Sci. Rev. 135, 5. 10.1007/s11214-007-9277-0 .

    Google Scholar 

  • Kilpua, E.K.J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A.B., Simunac, K.: 2009, STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys. 27, 4491. 10.5194/angeo-27-4491-2009 .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Lee, C.O., Luhmann, J.G., Li, Y.: 2011a, Interplanetary coronal mass ejections in the near–Earth solar wind during the minimum periods following solar cycles 22 and 23. Ann. Geophys. 29, 1455. 10.5194/angeo-29-1455-2011 .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Lian, J.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011b, Observations of ICMEs and ICME-like structures between 2007 – 2010 using near-Earth and STEREO observations. Solar Phys. 281, 391. 10.1007/s11207-012-9957-0 .

    ADS  Google Scholar 

  • Kilpua, E.K.J., Lian, J.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011c, Multipoint ICME Encounters: Pre-STEREO and STEREO Observations. J. Atmos. Solar-Terr. Phys. 73, 1228. 10.1007/s11207-012-0005-x .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Mierla, M., Rodriguez, L., Zhukov, A.N., Srivastava, N., West, M.J.: 2012, Estimating travel times of coronal mass ejections to 1 AU using multi-spacecraft coronagraph data. Solar Phys. 279, 477. 10.1007/s11207-012-0005-x .

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Luhmann, J.G., Jian, L.K., Russell, C.T., Li, Y.: 2013, Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J. Atmos. Solar-Terr. Phys. 107, 12.

    Article  ADS  Google Scholar 

  • Lara, A.: 2008, The source region of coronal mass ejections. Astrophys. J. 688, 647. 10.1086/591725 .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11,957.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C.: 2010, Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Ann. Geophys. 28, 1539. 10.5194/angeo-28-1539-2010 .

    Article  ADS  Google Scholar 

  • Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res. 92, 11189. 10.1029/JA092iA10p11189 .

    Article  ADS  Google Scholar 

  • Lugaz, N., Manchester, W.B., Gombosi, T.I.: 2005, The evolution of coronal mass ejection density structures. Astrophys. J. 627, 1019.

    Article  ADS  Google Scholar 

  • Ma, S., Attril, G.D.R., Golub, L., Lin, J.: 2010, Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys. J. 722, 289.

    Article  ADS  Google Scholar 

  • Mittal, N., Pandey, K., Narain, U., Sharma, S.S.: 2009, On properties of narrow CMEs observed with SOHO/LASCO. Astrophys. Space Sci. 323, 135.

    Article  ADS  Google Scholar 

  • Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. J. Geophys. Res. 117. 10.1029/2011JA016589 .

    Google Scholar 

  • Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., De Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2010, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758(1), 10. 10.1088/0004-637X/758/1/10 .

    Article  Google Scholar 

  • Nieves-Chinchilla, T., Vourlidas, A., Stenborg, G., Savani, N.P., Koval, A., Szabo, A., Jian, L.K.: 2013, Inner heliospheric evolution of a “stealth” CME derived from multi-view imaging and multipoint in-situ observations. I. Propagation to 1 AU. Astrophys. J. 779, 55. 10.1088/0004-637X/779/1/55 .

    Article  ADS  Google Scholar 

  • Nitta, N.V., Aschwanden, M.J., Freeland, S.L., Lemen, J.R., Wulser, J.-P., Zarro, D.M.: 2014, The association of solar flares with coronal mass ejections during the extended solar minimum. Solar Phys. 289, 1257. 10.1007/s11207-013-0388-3 .

    Article  ADS  Google Scholar 

  • Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K.: 2008, Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys. 248, 485. 10.1007/s11207-007-9104-5 .

    Article  ADS  Google Scholar 

  • Owens, M.J., Schwadron, N.A., Crooker, N.U., Hughes, W.J., Spence, H.E.: 2007, Role of coronal mass ejections in the heliospheric Hale cycle. Geophys. Res. Lett. 34, L06104. 10.1029/2006GL028795 .

    ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. 10.1023/A:1005105831781 .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100, 23,397.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648.

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. 10.1051/0004-6361:20041302 .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: stereo observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. 10.1088/0004-637X/701/1/283 .

    Article  ADS  Google Scholar 

  • Rodriguez, L., Mierla, M., Zhukov, A.N., West, M., Kilpua, K.E.J.: 2011, Linking remote-sensing and in situ observations of coronal mass ejections using STEREO. Solar Phys. 70, 561. 10.1007/s11207-011-9784-8 .

    Article  ADS  Google Scholar 

  • Schwenn, R., Dal Lago, A., Huttunen, K.E.J., Gonzalez, W.D.: 2005, The association of coronal mass ejections with the effects of their counterparts near the Earth. Ann. Geophys. 23, 1033.

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Lee, D.D.-H., Casto, K.P., Wang, Y.-M., Rich, N.B.: 2009, The structure of streamer blobs. Astrophys. J. 694, 1471. 10.1088/0004-637X/694/2/1471 .

    Article  ADS  Google Scholar 

  • St. Cyr, O.C., Howard, R.A., Sheeley, N.R., Plunkett, S.P., Michels, D.J., Paswaters, S.E., Koomen, M.J., Simnett, G.M., Thompson, B.J., Gurman, J.B., Schwenn, R., Webb, D.F., Hildner, E., Lamy, P.L.: 2000, Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 105(A8), 18169. 10.1029/1999JA000381 .

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763.

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. 10.1007/s11207-009-9346-5 .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2011, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 29, 839. 10.5194/angeo-29-839-2011 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A.: 2006, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J. 642(2), 1216. 10.1086/501122 .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2011, Erratum: “Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle”. Astrophys. J. 730, 1.

    Article  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. 10.1007/s11207-012-0084-8 .

    ADS  Google Scholar 

  • Wood, B.E., Howard, R.A.: 2009, An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J. 702(2), 901. 10.1088/0004-637X/702/2/901 .

    Article  ADS  Google Scholar 

  • Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524. 10.1088/0004-637X/715/2/1524 .

    Article  ADS  Google Scholar 

  • Wülser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudini’er, J.-P., Artzner, G., Auch’ere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: The STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) SPIE 5171. 10.1117/12.506877 .

    Google Scholar 

  • Yashiro, S., Michalek, G., Gopalswamy, N.: 2008, A comparison of coronal mass ejections identified by manual and automatic methods. Ann. Geophys. 26, 3103.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., Howard, R.A.: 2003, Properties of narrow coronal mass ejections observed with LASCO. Adv. Space Res. 32(12), 2631.

    ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 10.1029/2003JA010282 .

    MATH  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2005, Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996 – 2005. J. Geophys. Res. 112. 10.1029/2007JA012321 .

    Google Scholar 

  • Zhukov, A.N.: 2007, Using CME observations for geomagnetic storm forecasting. In: Lilensten, J. (ed.) Space Weather: Research Towards Applications in Europe 2nd European Space Weather Week, Astrophys. Space Sci. Lib. 344. 10.1007/1-4020-5446-7 .

    Chapter  Google Scholar 

  • Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 1572.

    Article  Google Scholar 

Download references

Acknowledgements

The LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The authors thank the STEREO/SECCHI consortium for providing the data. The SECCHI data used here were produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut for Solar System Research (Germany), Centre Spatiale de Liège (Belgium), Institut d’Optique Theorique et Appliquée (France), and Institut d’Astrophysique Spatiale (France). LR partially contributes to the research for the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 263252 [COMESEP]. We acknowledge support from the Belgian Federal Science Policy Office (BELSPO) through the ESA-PRODEX program. We acknowledge support from the CHARM framework (Contemporary physical challenges in Heliospheric and AstRophysical Models), a phase VII Interuniversity Attraction Pole (IAP) program organised by BELSPO. This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/08 CHARM). EKJK acknowledges the Academy of Finland (project 1218152). MM would like to thank Eva Robbrecht and Elke D’Huys for constructive discussions on stealth CMEs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. J. Kilpua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilpua, E.K.J., Mierla, M., Zhukov, A.N. et al. Solar Sources of Interplanetary Coronal Mass Ejections During the Solar Cycle 23/24 Minimum. Sol Phys 289, 3773–3797 (2014). https://doi.org/10.1007/s11207-014-0552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0552-4

Keywords

Navigation