Skip to main content
Log in

Flux Accretion and Coronal Mass Ejection Dynamics

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection. Both observations and numerical modeling, however, suggest that reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of magnetic flux onto a rising ejection by reconnection involving the ejection’s background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying the forces acting upon the ejection, generically increasing its upward acceleration. The modified forces, in turn, can more strongly drive the reconnection. This feedback process acts, effectively, as an instability, which we refer to as a reconnective instability. Our analysis implies that CME models that neglect the effects of reconnection cannot accurately describe observed CME dynamics. Our ultimate aim is to understand changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux. This flux can be estimated from observations of flare ribbons and photospheric magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. It should be noted that near-potentiality is not required for reconnection to be quenched by large-scale dynamics. For instance, consider two bipolar, parallel, twisted flux systems in an ideal MHD equilibrium. With no flux shared between the two systems, a separatrix surface exists between them. Now imagine that their footpoints were displaced slightly. This would cause a current sheet to develop between them (or enhance any already present). Onset of reconnection between the two systems should lead to reduction of current in the sheet.

  2. http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/text_ver/univ_all.txt .

References

  • Amari, T., Aly, J., Mikic, Z., Linker, J.: 2010, Coronal mass ejection initiation: on the nature of the flux cancellation model. Astrophys. J. Lett. 717, L26. DOI .

    Article  ADS  Google Scholar 

  • Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI . ADS .

    Article  ADS  Google Scholar 

  • Anzer, U.: 1978, Can coronal loop transients be driven magnetically. Solar Phys. 57, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Anzer, U., Pneuman, G.W.: 1982, Magnetic reconnection and coronal transients. Solar Phys. 79, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Alexander, D.: 2001, Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Solar Phys. 204, 91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benz, A.O.: 2008, Flare observations. Living Rev. Solar Phys. 5, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1999, Magnetic Helicity in Space Physics. Geophysical Monograph Series 111, American Geophysical Union, Washington, 1. DOI . ADS .

    Google Scholar 

  • Berger, T.E., Loefdahl, M.G., Shine, R.S., Title, A.M.: 1998, Measurements of solar magnetic element motion from high-resolution filtergrams. Astrophys. J. 495, 973. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI .

    Article  ADS  Google Scholar 

  • Cargill, P.J., Chen, J., Spicer, D.S., Zalesak, S.T.: 1996, Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma. J. Geophys. Res. 101, 4855. DOI . ADS .

    Article  ADS  Google Scholar 

  • Casini, R., López Ariste, A., Tomczyk, S., Lites, B.W.: 2003, Magnetic maps of prominences from full Stokes analysis of the He I D3 line. Astrophys. J. Lett. 598, L67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, J.: 1996, Theory of prominence eruption and propagation: interplanetary consequences. J. Geophys. Res. 101(10), 27499. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, J., Marqué, C., Vourlidas, A., Krall, J., Schuck, P.W.: 2006, The flux-rope scaling of the acceleration of coronal mass ejections and eruptive prominences. Astrophys. J. 649, 452. DOI . ADS .

    Article  ADS  Google Scholar 

  • Compagnino, A., Romano, P., Zuccarello, F.: 2017, A statistical study of CME properties and of the correlation between flares and CMEs over Solar Cycles 23 and 24. Solar Phys. 292, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Demoulin, P., Pariat, E., Berger, M.A.: 2006, Basic properties of mutual magnetic helicity. Solar Phys. 233, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Deng, M., Welsch, B.T.: 2017, The roles of reconnected flux and overlying fields in CME speeds. Solar Phys. 292, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dwight, H.B.: 1961, Tables of Integrals and Other Mathematical Data, 3rd rev. edn. Dover, New York. ADS

    MATH  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI .

    Article  ADS  Google Scholar 

  • Feng, L., Wang, Y., Shen, F., Shen, C., Inhester, B., Lu, L., Gan, W.: 2015, Why does the apparent mass of a coronal mass ejection increase? Astrophys. J. 812, 70. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbes, T.G., Priest, E.R.: 1984, Reconnection in solar flares, Chapter VIII in Sonnerup et al. NASA Ref. Publ. 1120, 1. ADS .

  • Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Freidberg, J.P.: 1987, Ideal Magnetohydrodynamics, Plenum, New York.

    Book  Google Scholar 

  • Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6(4), 459. DOI . ADS .

    Article  ADS  Google Scholar 

  • Goff, C.P., van Driel-Gesztelyi, L., Démoulin, P., Culhane, J.L., Matthews, S.A., Harra, L.K., Mandrini, C.H., Klein, K.L., Kurokawa, H.: 2007, A multiple flare scenario where the classic long-duration flare was not the source of a CME. Solar Phys. 240, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017b, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys. 292, 65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H.: 2017a, Coronal Flux Ropes and their Interplanetary Counterparts. arXiv . ADS .

  • Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365. DOI . ADS .

    Article  ADS  Google Scholar 

  • Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hinterreiter, J., Veronig, A.M., Thalmann, J.K., Tschernitz, J., Pötzi, W.: 2018, Statistical properties of ribbon evolution and reconnection electric fields in eruptive and confined flares. Solar Phys. 293, 38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 2011, Global properties of solar flares. Space Sci. Rev. 158, 5. DOI .

    Article  ADS  Google Scholar 

  • Inoue, S., Kusano, K., Büchner, J., Skála, J.: 2018, Formation and dynamics of a solar eruptive flux tube. Nat. Commun. 9, 174. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kahler, S.W.: 1992, Solar flares and coronal mass ejections. Annu. Rev. Astron. Astrophys. 30, 113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Lynch, B.J., Welsch, B.T., Sun, X.: 2017, A database of flare ribbon properties from solar dynamics observatory I: reconnection flux. Astrophys. J. 845, 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96(25), 255002. DOI .

    Article  ADS  Google Scholar 

  • Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: 2012, Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Larson, D.E., Lin, R.P., McTiernan, J.M., McFadden, J.P., Ergun, R.E., McCarthy, M., Rème, H., Sanderson, T.R., Kaiser, M., Lepping, R.P., Mazur, J.: 1997, Tracing the topology of the October 18 – 20, 1995, magnetic cloud with \({\sim}\,0.1\,\mbox{--}\,10^{2}\) keV electrons. Geophys. Res. Lett. 24, 1911. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leroy, J.L., Bommier, V., Sahal-Brechot, S.: 1983, The magnetic field in the prominences of the polar crown. Solar Phys. 83, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004a, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004b, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, J., Ko, Y.-K., Sui, L., Raymond, J.C., Stenborg, G.A., Jiang, Y., Zhao, S., Mancuso, S.: 2005, Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linton, M.G., DeVore, C.R., Longcope, D.W.: 2009, Patchy reconnection in a Y-type current sheet. Earth Planets Space 61, 573. DOI . ADS .

    Article  ADS  Google Scholar 

  • Linton, M.G., Longcope, D.W.: 2006, A model for patchy reconnection in three dimensions. Astrophys. J. 642, 1177. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 1996, A model for current ribbon formation and reconnection in a complex three-dimensional corona. Solar Phys. 169, 91. DOI . ADS .

    ADS  Google Scholar 

  • Longcope, D.W., Forbes, T.G.: 2014, Breakout and tether-cutting eruption models are both catastrophic (sometimes). Solar Phys. 289, 2091. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., Vourlidas, A.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115(A14), 7106. DOI . ADS .

    Google Scholar 

  • Lynch, B.J., Masson, S., Li, Y., DeVore, C.R., Luhmann, J.G., Antiochos, S.K., Fisher, G.H.: 2016, A model for stealth coronal mass ejections. J. Geophys. Res. 121, 10,677. ADS .

    Article  Google Scholar 

  • Ma, S., Attrill, G.D.R., Golub, L., Lin, J.: 2010, Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys. J. 722, 289. DOI . ADS .

    Article  ADS  Google Scholar 

  • MacNeice, P., Antiochos, S.K., Phillips, A., Spicer, D.S., DeVore, C.R., Olson, K.: 2004, A numerical study of the breakout model for coronal mass ejection initiation. Astrophys. J. 614, 1028. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martin, S.F., McAllister, A.H.: 1996, The skew of X-ray coronal loops overlying H alpha filaments. In: Uchida, Y., Kosugi, T., Hudson, H.S. (eds.) IAU Colloq. 153: Magnetodynamic Phenomena in the Solar Atmosphere – Prototypes of Stellar Magnetic Activity, 497. ADS .

    Chapter  Google Scholar 

  • McKenzie, D.E., Savage, S.L.: 2009, Quantitative examination of supra-arcade downflows in eruptive solar flares. Astrophys. J. 697, 1569. DOI . ADS .

    Article  ADS  Google Scholar 

  • McKenzie, D.E., Savage, S.L.: 2011, Distribution functions of sizes and fluxes determined from supra-arcade downflows. Astrophys. J. Lett. 735, L6. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moore, R.L., Roumeliotis, G.: 1992, Triggering of eruptive flares – destabilization of the preflare magnetic field configuration. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Colloq. 133: Eruptive Solar Flares, Lecture Notes in Physics 399, Springer, Berlin, 69. DOI . ADS .

    Chapter  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mouschovias, T.C., Poland, A.I.: 1978, Expansion and broadening of coronal loop transients – a theoretical explanation. Astrophys. J. 220, 675. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poletto, G., Kopp, R.A.: 1986, Macroscopic electric fields during two-ribbon flares. In: Neidig, D.F. (ed.) The Lower Atmosphere of Solar Flares, Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, August 20 – 24, 1985, National Solar Observatory, Sunspot, 453. (A87-26201 10-92). DOE-sponsored research. ADS .

    Google Scholar 

  • Priest, E.R., Forbes, T.G.: 2000, Magnetic Reconnection: MHD Theory and Applications, Cambridge University Press, New York. ADS .

    Book  MATH  Google Scholar 

  • Priest, E.R., Longcope, D.W.: 2017, Flux-rope twist in eruptive flares and CMEs: due to zipper and main-phase reconnection. Solar Phys. 292, 25. DOI . ADS .

    ADS  Google Scholar 

  • Qiu, J., Yurchyshyn, V.B.: 2005, Magnetic reconnection flux and coronal mass ejection velocity. Astrophys. J. Lett. 634, L121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Qiu, J., Wang, H., Cheng, C.Z., Gary, D.E.: 2004, Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys. J. 604, 900. DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rachmeler, L.A., Pariat, E., DeForest, C.E., Antiochos, S., Török, T.: 2010, Symmetric coronal jets: a reconnection-controlled study. Astrophys. J. 715, 1556. DOI . ADS .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savage, S.L., McKenzie, D.E.: 2011, Quantitative examination of a large sample of supra-arcade downflows in eruptive solar flares. Astrophys. J. 730, 98. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmieder, B., Demoulin, P., Aulanier, G., Golub, L.: 1996, Differential magnetic field shear in an active region. Astrophys. J. 467, 881. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelmann, T., Wheatland, M.S., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.K.: 2008, Nonlinear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection. Astrophys. J. 675, 1637. DOI .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2010, The photospheric energy and helicity budgets of the flux-injection hypothesis. Astrophys. J. 714, 68. DOI .

    Article  ADS  Google Scholar 

  • Shafranov, V.D.: 1966, Plasma equilibrium in a magnetic field. Rev. Plasma Phys. 2, 103. ADS .

    ADS  Google Scholar 

  • Somov, B.V., Bogachev, S.A.: 2003, The betatron effect in collapsing magnetic traps. Astron. Lett. 29, 621. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spruit, H.C.: 1981, Motion of magnetic flux tubes in the solar convection zone and chromosphere. Astron. Astrophys. 98, 155.

    ADS  MATH  Google Scholar 

  • Sturrock, P.A.: 1989, The role of eruption in solar flares. Solar Phys. 121, 387. DOI . ADS .

    Article  ADS  Google Scholar 

  • Su, Y., Golub, L., Van Ballegooijen, A.A.: 2007, A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys. J. 655, 606. DOI . ADS .

    Article  ADS  Google Scholar 

  • Svestka, Z., Cliver, E.W.: 1992, History and basic characteristics of eruptive flares. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Colloq. 133: Eruptive Solar Flares, Lecture Notes in Physics 399, Springer, Berlin, 1. DOI . ADS .

    Chapter  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Buzasi, D., Howard, R.A., Esfandiari, E.: 2002, Mass and energy properties of LASCO CMEs. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA Special Publication 506, 91. ADS .

    Google Scholar 

  • Vršnak, B.: 2006, Forces governing coronal mass ejections. Adv. Space Res. 38, 431. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Vrbanec, D., Čalogović, J.: 2008, Dynamics of coronal mass ejections. The mass-scaling of the aerodynamic drag. Astron. Astrophys. 490, 811. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A.L., Veronig, A.: 2004, Coronal mass ejection of 15 May 2001: II. Coupling of the CME acceleration and the flare energy release. Solar Phys. 225, 355. DOI . ADS .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Bretz, N., Jobes, F., Ono, Y., Perkins, F.: 1997, Study of driven magnetic reconnection in a laboratory plasma. Phys. Plasmas 4, 1936. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhao, X.P., Plunkett, S.P., Liu, W.: 2002, Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model. J. Geophys. Res. 107, 1223. DOI . ADS .

    Article  Google Scholar 

  • Zhao, J., Gilchrist, S.A., Aulanier, G., Schmieder, B., Pariat, E., Li, H.: 2016, Hooked flare ribbons and flux-rope-related QSL footprints. Astrophys. J. 823, 62. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is especially grateful for the extraordinary effort made by the dedicated and insightful referee, who carefully reviewed the manuscript through multiple revisions. Several substantive changes suggested by the referee were adopted, and these greatly improved the paper. We also appreciate helpful comments by Mitch Berger about an earlier draft’s treatment of magnetic helicity. We acknowledge funding from the National Science Foundation’s Solar Terrestrial program under award NSF AGS 1548732, NSF’s SHINE program via award NSF AGS 1622495, and NASA’s Heliophysics – Guest Investigator’s program via H-GI ODDE NNX15AN68G. The CDAW CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The author is grateful to the US taxpayers for providing the funds necessary to perform this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Welsch.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Appendices

Appendix A: Evolution of Magnetic Helicity

Magnetic reconnection not only alters the Lorentz forces acting on an erupting flux rope, it also changes the rope’s magnetic helicity (e.g., Berger et al. 1998). To consider the effect of reconnection on the ejection’s helicity, we idealize the erupting flux system as a toroidal rope of purely azimuthal flux, \(\Phi_{\mathrm{T}}\), formed by the ejection’s core, surrounded by purely poloidal flux, \(\Phi_{\mathrm{P}}\). The mutual helicity of the two flux systems, \(|H_{\mathrm {mut}}| = |2\Phi_{\mathrm{P}} \Phi_{\mathrm{T}}|\), quantifies linkages between the two flux systems. If the poloidal or azimuthal flux systems contained internal, “self” linkages, then the total helicity would be the sum of these self helicities and the mutual helicity. Because magnetic helicity is an ideal MHD invariant, no ideal process can lead to the increase of poloidal flux wrapping around the azimuthal core field. (Ideal processes could, however, cause poloidal flux to bunch up, leading to regions with stronger \(B_{\mathrm{P}}\).)

When reconnection occurs in the wake of the outward-moving toroidal rope, however, it adds flux that wraps around the rope. Helicity is approximately globally conserved in fast reconnection (e.g., Berger 1999), and this increase in the helicity of the erupting flux system is offset by an opposing change in mutual helicity between the erupting system and surrounding fields. Figure 10 illustrates key aspects of this evolution. For simplicity, both flux tubes shown are assumed to have no internal twist; relaxing this assumption would not substantively alter results of the analysis. Essentially, some of the mutual helicity between the rising, toroidal system (A in the figure) and the initially overlying, external flux system (B in the figure) is transformed into self helicity of the erupting system (toroid plus reconnected flux that encircles it) (Berger et al., 1998).

Figure 10
figure 10

Left: Flux systems A and B, each assumed untwisted, have a mutual helicity that is greater than zero, due to their positive crossing number. Middle: System A is erupting upward through B. Right: Flux from B has reconnected with itself, and thereby formed two flux systems, one that is closed and linked to system A and one that is anchored at the photosphere. The mutual helicity between A and the flux from system B that is anchored at the photosphere has changed sign, since the sign of their crossing has changed. Globally, helicity is conserved here, though it has been transferred between mutual and self helicities.

This transfer of helicity between the erupting and background flux systems may be seen by considering the sign of the crossing between the external flux and toroidal flux, which changes when the rising flux passes through the external field by driving the latter to reconnect with itself. Initially (left panel), their mutual helicity is \(H_{i} = +\Phi_{A} \Phi_{B} (b_{+} + b_{-})/\pi\), and in the final state (right panel), their mutual helicity is \(H_{f} = -\Phi_{A} \Phi _{B}(a_{+} + a_{-})/\pi\). (Demoulin, Pariat, and Berger (2006) review the sign convention for angles: the mutual helicity is defined from footpoint angles of the overlying loop; angles swing from the footpoint with the same sign as the apex loop’s footpoint toward the opposite-sign footpoint; and counterclockwise is positive.) The difference in mutual helicities is

$$ \Delta H_{\mathrm {mut}} = H_{f} - H_{i} = - \Phi_{A} \Phi_{B} (a_{+} + a _{-} + b_{+} + b_{-})/\pi= -2 \Phi_{A} \Phi_{B}. $$
(47)

The difference in mutual helicities from the changed crossing sign has been added to the self helicity of the erupting system: the flux that reconnected to encircle the rising flux contributes to the erupting system’s self helicity. The linking number of fluxes in the erupting system is \(+1\), so the helicity within that system is \(+2 \Phi_{A} \Phi _{B}\).

More detailed studies of helicity evolution due to reconnection in an eruption with reconnection have been undertaken (e.g., Priest and Longcope 2017).

Appendix B: Large-\(r\) Scaling of Hoop Force

From Equation 23, the hoop force \(F_{\mathrm{hoop}}\) on a length of torus \(r \, \Delta\phi\) scales as \(R^{2} \, \Delta \phi(B_{\mathrm{mid}}^{2}/8)\) for \(r \gg R\). The force per unit length therefore scales as

$$ \frac{F_{\mathrm{hoop}}}{r \, \Delta\phi} \sim\frac{R^{2} B_{\mathrm{mid}} ^{2}}{r}. $$
(48)

Shafranov (1966) derived an expression for the hoop force per unit length in terms of the total azimuthal electric current, \(I\), finding that the force per unit length scaled as \(I^{2}/r\). In our model, with the poloidal field in Equation 12, the electric current along the torus’s axis is

$$\begin{aligned} I =& \frac{c}{4\pi} \oint \boldsymbol {B} \cdot \mathrm{d}\boldsymbol {L} = \frac{c}{4 \pi} \int_{-\pi}^{\pi} \frac{B_{\mathrm{mid}} \, r}{r + R \cos\theta} R \, \mathrm{d}\theta \end{aligned}$$
(49)
$$\begin{aligned} =& \frac{c r R B_{\mathrm{mid}}}{4\pi} \biggl[ \frac{2}{\sqrt{r ^{2} - R^{2}}} \tan^{-1} \biggl( \frac{\sqrt{r - R}}{\sqrt{r + R}} \tan(\theta/2) \biggr) \bigg\vert _{-\pi}^{\pi} \biggr] \end{aligned}$$
(50)
$$\begin{aligned} =& \frac{c r R B_{\mathrm{mid}}}{4\pi} \frac{2 \pi}{\sqrt{r^{2} - R ^{2}}} = \frac{c r R B_{\mathrm{mid}}}{2 \sqrt{r^{2} - R^{2}}}. \end{aligned}$$
(51)

Therefore, in our model, \(I^{2}/r\) varies with \(r\) as

$$ I^{2}/r \sim\frac{r R^{2} B_{\mathrm{mid}}^{2}}{(r^{2} - R^{2})} = \frac{R ^{2} B_{\mathrm{mid}}^{2}}{r (1 - (R/r)^{2})} . $$
(52)

In the \(r \gg R\) limit, then,

$$ I^{2}/r \sim\frac{R^{2} B_{\mathrm{mid}}^{2}}{r} . $$
(53)

This matches the scaling of our force per unit length, from Equation 48. Figure 6 shows a comparison of \(1/r\) (dotted line) with the radial dependence of the term in square brackets in the expression for \(F_{\mathrm{hoop}}\) in Equation 22 (solid line).

Appendix C: Pre- to Post-Dipolarization Change in Hoop Force

Another aspect of the change in hoop force is more subtle: the total change in force on the proto-ejection by the addition of reconnected flux \(\Delta\Phi\) is likely larger than the value given in Equation 32. To see why, we must consider how the net force exerted by the reconnected field on the ejection changes as a result of the dipolarization.

We define \(t_{i}\) to be an instant after this flux has reconnected but before it has fully dipolarized, and \(t_{f}\) to be after full dipolarization. At \(t_{i}\), the field strength on the inner side of the proto-ejection is weaker than assumed in deriving Equation 20, as shown in the left magnetic field configuration in Figure 11. Consequently, the pre-dipolarization, inner-surface component of the hoop force, \(F_{\mathrm {inner,pre}}\), is weaker than \(F_{\mathrm{inner}}\) derived above. We assume that flux arching over the proto-ejection’s leading edge is unchanged by the reconnection, so always acts on the proto-ejection with the same inward pressure force \(F_{\mathrm{outer}}\). This implies that the instantaneous hoop force acting on the proto-ejection due to just the annulus of reconnected flux is strongest after complete dipolarization, as depicted in the right panel of Figure 11. This force is equal to the value given in Equation 32, which can also be understood as the net pressure force due to only the annulus of reconnected flux \(\Delta\Phi\) that wraps around the proto-ejection,

$$ \Delta F_{\mathrm{hoop}} = F_{{\mathrm {inner}}, \Delta\Phi} + F_{{\mathrm {outer}}, \Delta\Phi}, $$
(54)

where the \(\Delta\Phi\) subscripts indicate that these forces are due only to the reconnected flux, and \(F_{\mathrm{outer}, \Delta\Phi}\) is negative.

Figure 11
figure 11

Left: Prior to complete dipolarization of post-reconnection flux, the flux density behind the ejection, \(B_{\mathrm {pre}}\), is less than the inner-edge flux density \(B_{\mathrm{in}}\) assumed in deriving Equation 20. The distance from the reconnection site to the trailing edge of the proto-ejection is assumed to be \({\sim}\, r/2\). The inward pressure force on the proto-ejection’s outer surface due to the reconnected flux, \(F_{{\mathrm {outer}},\Delta \Phi}\), assumed to be unchanging, is depicted as a blue vector. The pre-dipolarization outward pressure force on its inner surface due to the reconnected flux, \(F_{{\mathrm {inner,pre}},\Delta\Phi}\), is depicted as a red vector. For the configuration shown, at time \(t_{i}\), the net pressure force from the annulus of reconnected flux is inward (negative). Right: After complete dipolarization at \(t_{f}\), the outward pressure force from the reconnected flux (denoted \(F_{{\mathrm {inner}},\Delta\Phi}\)) is larger, and the net (outward) pressure force from the annulus of reconnected flux is strongest, and equal to \(\Delta F_{\mathrm{hoop}}\) from Equation 32. The total change in the magnetic pressure force on the proto-ejection is the net pressure force at \(t_{f}\) minus the net pressure force at \(t_{i}\), \(\Delta F_{fi}\) and this difference can exceed the value for \(\Delta F_{\mathrm{hoop}}\).

This instantaneous force, however, is not the same as the change in pressure force acting on the proto-ejection due to the accretion of reconnected flux. The change in pressure force on the ejection from \(t_{i}\) to \(t_{f}\) is the difference between the net forces at \(t_{f}\) and \(t_{i}\),

$$\begin{aligned} \Delta F_{fi} =& (F_{\mathrm{inner}, \Delta\Phi} + F_{\mathrm{outer}, \Delta\Phi}) - (F_{\mathrm{inner, pre}, \Delta\Phi} + F_{\mathrm{outer},\Delta\Phi}) \end{aligned}$$
(55)
$$\begin{aligned} =& (F_{{\mathrm{inner}}, \Delta\Phi} - F_{{\mathrm{inner,pre}}, \Delta\Phi}), \end{aligned}$$
(56)

where the subscripts denote the outward and inward forces (subscripted inner and outer, respectively) on the proto-ejection from the reconnected flux \(\Delta\Phi\). It can be seen that if \(|F_{\mathrm{inner,pre}, \Delta\Phi}| < |F_{\mathrm{outer}, \Delta\Phi}|\), then \(\Delta F_{fi} > \Delta F_{\mathrm{hoop}}\) from Equation 32. We remark that, much like the magnetic tension force from a flux tube \(\Delta\Phi\) that is inward prior to tether-cutting reconnection, the net force due to inward and outward magnetic pressures from a flux tube \(\Delta\Phi\) might also be inward in the pre-dipolarization state (i.e., \((F_{\mathrm{inner,pre}, \Delta\Phi} + F_{\mathrm{outer}, \Delta\Phi}) < 0\) in Equation 55).

How much weaker would the pre-dipolarization magnetic field, \(B_{\mathrm{pre}}\), have to be for the pre-dipolarization force to be inward? As a first step to addressing this question, we use Equation 20 to crudely approximate the outward pressure force prior to complete dipolarization, \(F_{\mathrm{inner,pre},\Delta\Phi}\), to be

$$ F_{\mathrm{inner,pre}, \Delta\Phi} \simeq(B_{\mathrm{pre}}/B_{\mathrm{in}})^{2} F_{\mathrm{inner}, \Delta\Phi}. $$
(57)

We expect that the behavior of \(F_{\mathrm{inner}, \Delta\Phi}\) follows \(F_{\mathrm{inner}}\), and similarly that \(F_{\mathrm{outer}, \Delta\Phi}\) follows \(F_{\mathrm{outer}}\). It is helpful to refer again to Figure 9, which plots the ratio of \(|F_{\mathrm{outer}}/F _{\mathrm{inner}}|\) as a function of major radius \(r\), in units of minor radius \(R\). For \((r/R)\) near unity, \(|F_{\mathrm{outer}}| \ll |F_{\mathrm{inner}}|\), but \(|F_{\mathrm{outer}}|\) is more comparable to \(|F_{\mathrm{inner}}|\) at larger \((r/R)\). For the ratio \((r/R) = 3\) assumed above, \(|F_{\mathrm{outer}}/F_{\mathrm{inner}}|\) is near 0.6, implying that a ratio of \((B_{\mathrm {pre}}/B_{\mathrm{inner}})\) of 0.7, for instance, would yield an initially inward force:

$$ F_{\mathrm{inner,pre}, \Delta\Phi} + F_{\mathrm{outer}, \Delta\Phi} \simeq0.49 F_{\mathrm{inner}, \Delta\Phi} - 0.6 F_{\mathrm{inner}, \Delta\Phi} < 0. $$
(58)

A flux density of 0.7 times the dipolarized value would occur if the average thickness of the shaded region in Figure 11 were more than about \((0.7)^{-1} \simeq1.4\) times the final thickness, \(\Delta R\).

It might be suggested that having an \(F_{\mathrm{inner,pre}, \Delta \Phi}\) weaker than \(F_{\mathrm{outer}, \Delta\Phi}\) is somehow unphysical, and that \((F_{\mathrm{inner}, \Delta\Phi} + F_{\mathrm{outer}, \Delta\Phi})\) must for some reason always be outward for an accelerating CME. But our analysis does not consider all forces on an ejection, just forces from a single flux tube \(\Delta\Phi\), and forces from individual tubes may oppose the ejection. As noted above, a similar analysis is implicit in the tether-cutting model, which supposes that many individual tethers oppose an eruption’s upward motion, but nonetheless that eruption can have a net outward force.

How much larger is the change in hoop force \(\Delta F_{fi}\) than the estimate in Equation 32? It is problematic to estimate the diminished pressure force on the inner surface of the ejection prior to complete dipolarization without assuming a model of the field structure in reconnection outflow, which is beyond the scope of this analysis.

Appendix D: Tension Force for Torus

We revisit the change in tension estimated in Equation 8 above to investigate the effect, if any, of the axial curvature that gives rise to the hoop force, since this could also affect the change in tension from \(B_{\mathrm{P}}\). To get the total (sum of upward and downward) tension, we now use Equation 12 in Equation 5 and integrate over \([-\pi,\pi]\),

$$\begin{aligned} \Delta F_{\mathrm{tension}} =& \frac{1}{4\pi} \int \mathrm{d}V \, \hat{z} \cdot(\boldsymbol {B} \cdot \boldsymbol {\nabla } ) \boldsymbol {B} \end{aligned}$$
(59)
$$\begin{aligned} =& \frac{1}{4\pi} \int R \, \mathrm{d}\theta\, \mathrm{d}A \, B_{\mathrm{P}}(\theta) \frac{ \hat{z} }{R} \cdot\frac{\partial(B_{\mathrm{P}}(\theta) \hat{b})}{\partial \theta} \end{aligned}$$
(60)
$$\begin{aligned} =& \frac{\Delta\Phi}{4\pi} \int\, \mathrm{d}\theta\, \hat{z} \cdot\frac{ \partial( B_{\mathrm{P}}(\theta) \hat{b})}{\partial\theta} \end{aligned}$$
(61)
$$\begin{aligned} =& \frac{\Delta\Phi}{4\pi} \int_{-\pi}^{\pi} \, \mathrm{d}\theta \biggl( - \frac{\partial B_{\mathrm{P}}(\theta)}{\partial\theta} \sin\theta- B _{\mathrm{P}}(\theta) \cos\theta \biggr) \end{aligned}$$
(62)
$$\begin{aligned} =& \frac{- \Delta\Phi B_{\mathrm{mid}}}{4\pi} \int_{-\pi}^{\pi} \,\mathrm{d} \theta \biggl( \frac{r R \sin^{2} \theta}{(r + R \cos\theta)^{2}} + \frac{r \cos\theta}{r + R \cos\theta} \biggr) \end{aligned}$$
(63)
$$\begin{aligned} =& \frac{- \Delta\Phi B_{\mathrm{mid}}}{4\pi} \int_{-\pi}^{\pi} \,\mathrm{d} \theta \biggl( \frac{r R + r^{2} \cos\theta}{(r + R \cos\theta)^{2}} \biggr) \end{aligned}$$
(64)
$$\begin{aligned} =& \frac{- \Delta\Phi B_{\mathrm{mid}}}{4\pi} \int_{-\pi}^{\pi}\, \mathrm{d} \theta \biggl( \frac{(r/R) + (r/R)^{2} \cos\theta}{(r/R + \cos \theta)^{2}} \biggr) \end{aligned}$$
(65)
$$\begin{aligned} =& \frac{- \Delta\Phi B_{\mathrm{mid}} \, c}{4\pi} \int_{-\pi}^{\pi} \,\mathrm{d} \theta \biggl( \frac{1 + c \cos\theta}{(c + \cos\theta)^{2}} \biggr), \end{aligned}$$
(66)

where, as before, the unit vector of the poloidal field is given by \(\hat{b} = \hat{\theta}= (\cos\theta\hat{x} - \sin\theta\hat{z})\), \(\mathrm{d}V = \mathrm{d}A \, R \,\mathrm{d}\theta\), \(\Delta\Phi= B_{\mathrm{P}} \, \Delta A\) is the flux that reconnects, and in the last line we have defined \(c = r/R\).

From Dwight (1961) (p. 106), we first evaluate

$$\begin{aligned} \int_{-\pi}^{\pi}\, \mathrm{d}\theta\frac{1}{(c + \cos\theta)^{2}} =& \frac{\sin\theta}{(1 - c^{2})(c + \cos\theta)} \bigg\vert _{-\pi}^{\pi}- \frac{c}{1 - c^{2}} \int_{-\pi}^{\pi} \,\mathrm{d}\theta\frac{1}{(c + \cos\theta)} \end{aligned}$$
(67)
$$\begin{aligned} =& \frac{c}{c^{2} - 1} \int_{-\pi}^{\pi} \,\mathrm{d}\theta\frac{1}{(c + \cos\theta)}. \end{aligned}$$
(68)

Second, and also from Dwight (1961) (p. 106), we evaluate

$$\begin{aligned} \int_{-\pi}^{\pi} \,\mathrm{d}\theta \frac{c \cos\theta}{(c + \cos\theta)^{2}} =& \frac{c^{2} \sin\theta}{(c^{2} - 1)(c + \cos\theta)} \bigg\vert _{-\pi} ^{\pi}- \frac{c}{c^{2} - 1} \int_{-\pi}^{\pi} \,\mathrm{d}\theta\frac{1}{(c + \cos\theta)} \end{aligned}$$
(69)
$$\begin{aligned} =& - \frac{c}{c^{2} - 1} \int_{-\pi}^{\pi} \,\mathrm{d}\theta\frac{1}{(c + \cos\theta)} . \end{aligned}$$
(70)

Equations 68 and 70 are equal and opposite.

This cancellation is reasonable, given that our model poloidal field is essentially circular, so the curvature is uniform around the flux tube over which the force density is integrated. It is true that, due to the higher flux density on the inner section of the flux tube, the force density is higher there. But the force density is not integrated over equal volumes for the inner and outer segments; it is over different volumes threaded by equal amounts of flux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welsch, B.T. Flux Accretion and Coronal Mass Ejection Dynamics. Sol Phys 293, 113 (2018). https://doi.org/10.1007/s11207-018-1329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1329-y

Keywords

Navigation