Skip to main content
Log in

LOFAR Observations of Fine Spectral Structure Dynamics in Type IIIb Radio Bursts

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30 – 80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abranin, E.P., Baselian, L.L., Goncharov, N.I., Zinichev, V.A., Rapoport, V.O., Tsybko, I.G.: 1979, Harmonic structure of type IIIb and III bursts. Solar Phys. 62, 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Nindos, A., Patsourakos, S., Kontogeorgos, A., Tsitsipis, P.: 2015, A tiny event producing an interplanetary type III burst. Astron. Astrophys. 582, A52. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alvarez, H., Haddock, F.T.: 1973, Solar wind density model from km-wave type III bursts. Solar Phys. 29, 197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Arzner, K., Magun, A.: 1999, Radiowave propagation in a statistically inhomogeneous plasma. Astron. Astrophys. 351, 1165. ADS .

    ADS  Google Scholar 

  • Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. Praxis Publishing Ltd., Chichester.

    Google Scholar 

  • Baselian, L.L., Goncharov, N.I., Zaitsev, V.V., Zinichev, V.A., Rapoport, V.O., Tsybko, I.G.: 1974, Frequency and time splitting of decameter solar radio bursts. I – Elementary events. Solar Phys. 39, 213. DOI . ADS .

    Article  ADS  Google Scholar 

  • Baselyan, L.L., Goncharov, N.Y., Zaitsev, V.V., Zinichev, V.A., Rapoport, V.O., Tsybko, Y.G.: 1974, Frequency and time splitting of decameter solar radio bursts. II: Chains. Solar Phys. 39, 223. DOI . ADS .

    Article  ADS  Google Scholar 

  • Benz, A.O.: 2008, Flare observations. Living Rev. Solar Phys. 5, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bhonsle, R.V., Sawant, H.S., Degaonkar, S.S.: 1979, Exploration of the solar corona by high resolution solar decametric observations. Space Sci. Rev. 24, 259. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brazhenko, A.I., Melnik, V.N., Frantsuzenko, A.V., Dorovskyy, V.V., Rucker, H.O., Panchenko, M.: 2015, On the harmonic coupling of components in pairs of IIIb – III bursts at decameter wavelengths. Radio Phys. Radio Astron. 20, 99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, X., Kontar, E.P., Yu, S., Yan, Y., Huang, J., Tan, B.: 2018, Fine structures of solar radio type III bursts and their possible relationship with coronal density turbulence. Astrophys. J. 856, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • de La Noe, J., Boischot, A.: 1972, The type iii b burst. Astron. Astrophys. 20, 55. ADS .

    ADS  Google Scholar 

  • Ellis, G.R.A.: 1969, Fine structure in the spectra of solar radio bursts. Aust. J. Phys. 22, 177. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ellis, G.R.A., McCulloch, P.M.: 1967, Frequency splitting of solar radio bursts. Aust. J. Phys. 20, 583. ADS .

    Article  ADS  Google Scholar 

  • Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of x-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Klassen, A., Gómez-Herrero, R., Heber, B.: 2011, Electron spikes, type III radio bursts and EUV jets on 22 February 2010. Solar Phys. 273, 413. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Kontar, E.P.: 2018, The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave. Astrophys. J. 861, 33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kontar, E.P.: 2001, Dynamics of electron beams in the solar corona plasma with density fluctuations. Astron. Astrophys. 375, 629. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kontar, E.P., Yu, S., Kuznetsov, A.A., Emslie, A.G., Alcock, B., Jeffrey, N.L.S., Melnik, V.N., Bian, N.H., Subramanian, P.: 2017, Imaging spectroscopy of solar radio burst fine structures. Nat. Commun. 8, 1515. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krucker, S., Kontar, E.P., Christe, S., Lin, R.P.: 2007, Solar flare electron spectra at the Sun and near the Earth. Astrophys. J. Lett. 663, L109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krüger, A.: 1984, Introduction to Solar Radio Astronomy and Radio Physics, Reidel, Dordrecht.

    Google Scholar 

  • Krupar, V., Maksimovic, M., Santolik, O., Kontar, E.P., Cecconi, B., Hoang, S., Kruparova, O., Soucek, J., Reid, H., Zaslavsky, A.: 2014, Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/waves instruments: Radio flux density variations with frequency. Solar Phys. 289, 3121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, R.P.: 1974, Non-relativistic solar electrons. Space Sci. Rev. 16, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, R.P.: 1985, Energetic solar electrons in the interplanetary medium. Solar Phys. 100, 537. DOI . ADS .

    Article  ADS  Google Scholar 

  • McLean, D.J., Labrum, N.R.: 1985, Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, Cambridge University Press, Cambridge.

    Google Scholar 

  • Melrose, D.B.: 1982, Fine structures in decametric noise storms: Possible mechanisms. In: Benz, A.O., Zlobec, P. (eds.) Solar Radio Storms, CESRA Workshop No. 4, 182. ADS .

    Google Scholar 

  • Morosan, D.E., Gallagher, P.T., Zucca, P., Fallows, R., Carley, E.P., Mann, G., Bisi, M.M., Kerdraon, A., Konovalenko, A.A., MacKinnon, A.L., et al.: 2014, LOFAR tied-array imaging of type III solar radio bursts. Astron. Astrophys. 568, A67. DOI . ADS .

    Article  Google Scholar 

  • Morosan, D.E., Gallagher, P.T., Zucca, P., O’Flannagain, A., Fallows, R., Reid, H., Magdalenić, J., Mann, G., Bisi, M.M., Kerdraon, A., et al.: 2015, LOFAR tied-array imaging and spectroscopy of solar S bursts. Astron. Astrophys. 580, A65. DOI . ADS .

    Article  Google Scholar 

  • Mugundhan, V., Hariharan, K., Ramesh, R.: 2017, Solar type IIIb radio bursts as tracers for electron density fluctuations in the corona. Solar Phys. 292, 155. DOI . ADS .

    Article  ADS  Google Scholar 

  • Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Régnier, S., Priest, E.R., Hood, A.W.: 2008, Coronal Alfvén speeds in an isothermal atmosphere. I. Global properties. Astron. Astrophys. 491, 297. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Reid, H.A.S., Kontar, E.P.: 2017, Imaging spectroscopy of type U and J solar radio bursts with LOFAR. Astron. Astrophys. 606, A141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Roberts, B.: 2000, Waves and oscillations in the corona – (Invited review). Solar Phys. 193, 139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stappers, B.W., Hessels, J.W.T., Alexov, A., Anderson, K., Coenen, T., Hassall, T., Karastergiou, A., Kondratiev, V.I., Kramer, M., van Leeuwen, J., et al.: 2011, Observing pulsars and fast transients with LOFAR. Astron. Astrophys. 530, A80. DOI . ADS .

    Article  Google Scholar 

  • Steinberg, J.L., Aubier-Giraud, M., Leblanc, Y., Boischot, A.: 1971, Coronal scattering, absorption and refraction of solar radiobursts. Astron. Astrophys. 10, 362. ADS .

    ADS  Google Scholar 

  • Stewart, R.T.: 1975, An example of a fundamental type IIIb radio burst. Solar Phys. 40, 417. DOI . ADS .

    Article  ADS  Google Scholar 

  • Suzuki, S., Dulk, G.A.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Bursts of Type III and Type V, Cambridge University Press, Cambridge, 289. ADS .

    Google Scholar 

  • Takakura, T., Yousef, S.: 1975, Type IIIb radio bursts – 80 MHz source position and theoretical model. Solar Phys. 40, 421. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Haarlem, M.P., Wise, M.W., Gunst, A.W., Heald, G., McKean, J.P., Hessels, J.W.T., de Bruyn, A.G., Nijboer, R., Swinbank, J., Fallows, R., et al.: 2013, LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 556, A2. DOI . ADS .

    Article  Google Scholar 

Download references

Acknowledgements

The work has benefited from a Marie Curie International Research Staff Exchange Scheme “Radiosun” (PEOPLE-2011-IRSES-295272), an international team grant ( http://www.issibern.ch/teams/lofar/ ) from ISSI Bern, Switzerland, the Program No. 28 of the RAS Presidium, and budgetary funding of Basic Research program II.16. E.P.K. was supported by Science and Technology Facilities Council Grant (STFC) No. ST/P000533/1. This paper is based (in part) on data obtained from facilities of the International LOFAR Telescope (ILT) under project code LC3-012. LOFAR (van Haarlem et al., 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, which are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefited from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sharykin.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors claim that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharykin, I.N., Kontar, E.P. & Kuznetsov, A.A. LOFAR Observations of Fine Spectral Structure Dynamics in Type IIIb Radio Bursts. Sol Phys 293, 115 (2018). https://doi.org/10.1007/s11207-018-1333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1333-2

Keywords

Navigation