Skip to main content
Log in

Upflows in the Upper Solar Atmosphere

Invited Review

  • Editors’ Choice / Invited Review
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Spectroscopic observations at extreme- and far-ultraviolet wavelengths have revealed systematic upflows in the solar transition region and corona. These upflows are best seen in the network structures of the quiet Sun and coronal holes, boundaries of active regions, and dimming regions associated with coronal mass ejections. They have been intensively studied in the past two decades because they are likely to be closely related to the formation of the solar wind and heating of the upper solar atmosphere. We present an overview of the characteristics of these upflows, introduce their possible formation mechanisms, and discuss their potential roles in the mass and energy transport in the solar atmosphere. Although past investigations have greatly improved our understanding of these upflows, they have left us with several outstanding questions and unresolved issues that should be addressed in the future. New observations from the Solar Orbiter mission, the Daniel K. Inouye Solar Telescope, and the Parker Solar Probe will likely provide critical information to advance our understanding of the generation, propagation, and energization of these upflows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Aiouaz, T.: 2008, Evidence of relentless reconnections at boundaries of supergranular network lanes in quiet sun and coronal hole. Astrophys. J. 674(2), 1144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aiouaz, T., Peter, H., Lemaire, P.: 2005, The correlation between coronal Doppler shifts and the supergranular network. Astron. Astrophys. 435(2), 713. DOI. ADS.

    Article  ADS  Google Scholar 

  • Al-Janabi, K., Antolin, P., Baker, D., Bellot Rubio, L.R., Bradley, L., Brooks, D.H., Centeno, R., Culhane, J.L., Del Zanna, G., Doschek, G.A., Fletcher, L., Hara, H., Harra, L.K., Hillier, A.S., Imada, S., Klimchuk, J.A., Mariska, J.T., Pereira, T.M.D., Reeves, K.K., Sakao, T., Sakurai, T., Shimizu, T., Shimojo, M., Shiota, D., Solanki, S.K., Sterling, A.C., Su, Y., Suematsu, Y., Tarbell, T.D., Tiwari, S.K., Toriumi, S., Ugarte-Urra, I., Warren, H.P., Watanabe, T., Young, P.R. (Hinode Review Team): 2019, Achievements of Hinode in the first eleven years. Pub. Astron. Soc. Japan 71(5), R1. DOI. ADS.

    Article  Google Scholar 

  • Anderson, M., Appourchaux, T., Auchère, F., Aznar Cuadrado, R., Barbay, J., Baudin, F., Beardsley, S., Bocchialini, K., Borgo, B., Bruzzi, D., Buchlin, E., Burton, G., Büchel, V., Caldwell, M., Caminade, S., Carlsson, M., Curdt, W., Davenne, J., Davila, J., Deforest, C.E., Del Zanna, G., Drummond, D., Dubau, J., Dumesnil, C., Dunn, G., Eccleston, P., Fludra, A., Fredvik, T., Gabriel, A., Giunta, A., Gottwald, A., Griffin, D., Grundy, T., Guest, S., Gyo, M., Haberreiter, M., Hansteen, V., Harrison, R., Hassler, D.M., Haugan, S.V.H., Howe, C., Janvier, M., Klein, R., Koller, S., Kucera, T.A., Kouliche, D., Marsch, E., Marshall, A., Marshall, G., Matthews, S.A., McQuirk, C., Meining, S., Mercier, C., Morris, N., Morse, T., Munro, G., Parenti, S., Pastor-Santos, C., Peter, H., Pfiffner, D., Phelan, P., Philippon, A., Richards, A., Rogers, K., Sawyer, C., Schlatter, P., Schmutz, W., Schühle, U., Shaughnessy, B., Sidher, S., Solanki, S.K., Speight, R., Spescha, M., Szwec, N., Tamiatto, C., Teriaca, L., Thompson, W., Tosh, I., Tustain, S., Vial, J.-C., Walls, B., Waltham, N., Wimmer-Schweingruber, R., Woodward, S., Young, P., de Groof, A., Pacros, A., Williams, D., Müller, D. (SPICE Consortium): 2020, The Solar Orbiter SPICE instrument. An extreme UV imaging spectrometer. Astron. Astrophys. 642, A14. DOI. ADS.

    Article  Google Scholar 

  • Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105(A5), 10465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Wills-Davey, M.J.: 2010, Revealing the fine structure of coronal dimmings and associated flows with Hinode/EIS. Implications for understanding the source regions of sustained outflow following CMEs. Solar Phys. 264(1), 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Green, L.M.: 2012, Forecasting a CME by spectroscopic precursor? Solar Phys. 276(1-2), 219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H., Démoulin, P., Murray, M.J.: 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows. Astrophys. J. 705(1), 926. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baker, D., Janvier, M., Démoulin, P., Mand rini, C.H.: 2017, Apparent and intrinsic evolution of active region upflows. Solar Phys. 292(4), 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bewsher, D., Harrison, R.A., Brown, D.S.: 2008, The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys. 478(3), 897. DOI. ADS.

    Article  ADS  Google Scholar 

  • Boutry, C., Buchlin, E., Vial, J.-C., Régnier, S.: 2012, Flows at the edge of an active region: observation and interpretation. Astrophys. J. 752(1), 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bradshaw, S.J., Aulanier, G., Del Zanna, G.: 2011, A reconnection-driven rarefaction wave model for coronal outflows. Astrophys. J. 743(1), 66. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bradshaw, S.J., Klimchuk, J.A.: 2015, Chromospheric nanoflares as a source of coronal plasma. II. Repeating nanoflares. Astrophys. J. 811(2), 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: 2015, Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brooks, D.H., Warren, H.P.: 2011, Establishing a connection between active region outflows and the solar wind: abundance measurements with EIS/Hinode. Astrophys. J. Lett. 727(1), L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brooks, D.H., Warren, H.P.: 2012, The coronal source of extreme-ultraviolet line profile asymmetries in solar active region outflows. Astrophys. J. Lett. 760(1), L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brooks, D.H., Winebarger, A.R., Savage, S., Warren, H.P., De Pontieu, B., Peter, H., Cirtain, J.W., Golub, L., Kobayashi, K., McIntosh, S.W., McKenzie, D., Morton, R., Rachmeler, L., Testa, P., Tiwari, S., Walsh, R.: 2020, The drivers of active region outflows into the slow solar wind. Astrophys. J. 894(2), 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bryans, P., Young, P.R., Doschek, G.A.: 2010, Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715(2), 1012. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bryans, P., McIntosh, S.W., De Moortel, I., De Pontieu, B.: 2016, On the connection between propagating solar coronal disturbances and chromospheric footpoints. Astrophys. J. Lett. 829(1), L18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cattell, C., Glesener, L., Leiran, B., Goetz, K., Martínez Oliveros, J.C., Badman, S.T., Pulupa, M., Bale, S.D.: 2021, Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe. DOI.

  • Chen, F., Ding, M.D., Chen, P.F.: 2010, Spectroscopic analysis of an EIT wave/dimming observed by Hinode/EIS. Astrophys. J. 720(2), 1254. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, H., Yang, J., Ji, K., Duan, Y.: 2019a, Observational analysis on the early evolution of a CME flux rope: preflare reconnection and flux rope’s footpoint drift. Astrophys. J. 887(2), 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, Y., Tian, H., Huang, Z., Peter, H., Samanta, T.: 2019b, Investigating the transition region explosive events and their relationship to network jets. Astrophys. J. 873(1), 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cirtain, J.W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: 2007, Evidence for Alfvén waves in solar X-ray jets. Science 318(5856), 1580. DOI. ADS.

    Article  ADS  Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243(1), 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Culhane, J.L., Brooks, D.H., van Driel-Gesztelyi, L., Démoulin, P., Baker, D., DeRosa, M.L., Mand rini, C.H., Zhao, L., Zurbuchen, T.H.: 2014, Tracking solar active region outflow plasma from its source to the near-Earth environment. Solar Phys. 289(10), 3799. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dadashi, N., Teriaca, L., Solanki, S.K.: 2011, The quiet Sun average Doppler shift of coronal lines up to 2 MK. Astron. Astrophys. 534, A90. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dammasch, I.E., Wilhelm, K., Curdt, W., Hassler, D.M.: 1999, The NE BT VIII (lambda 770) resonance line: solar wavelengths determined by SUMER on SOHO. Astron. Astrophys. 346, 285. ADS.

    ADS  Google Scholar 

  • Dammasch, I.E., Curdt, W., Dwivedi, B.N., Parenti, S.: 2008, The redshifted footpoints of coronal loops. Ann. Geophys. 26(10), 2955. DOI. ADS.

    Article  ADS  Google Scholar 

  • de Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149(1-4), 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23. ADS.

    ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S.W.: 2010, Quasi-periodic propagating signals in the solar corona: the signature of magnetoacoustic waves or high-velocity upflows? Astrophys. J. 722(2), 1013. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S., Hansteen, V.H., Carlsson, M., Schrijver, C.J., Tarbell, T.D., Title, A.M., Shine, R.A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., Nagata, S.: 2007, A tale of two spicules: the impact of spicules on the magnetic chromosphere. Pub. Astron. Soc. Japan 59, S655. DOI. ADS.

    Article  Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: 2009, Observing the roots of solar coronal heating – in the chromosphere. Astrophys. J. Lett. 701(1), L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331(6013), 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289(7), 2733. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G.: 2008, Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481(1), L49. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T.: 2011, A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137. DOI. ADS.

    Article  Google Scholar 

  • Démoulin, P., Baker, D., Mandrini, C.H., van Driel-Gesztelyi, L.: 2013, The 3D geometry of active region upflows deduced from their limb-to-limb evolution. Solar Phys. 283(2), 341. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dissauer, K., Veronig, A.M., Temmer, M., Podladchikova, T., Vanninathan, K.: 2018, On the detection of coronal dimmings and the extraction of their characteristic properties. Astrophys. J. 855(2), 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dissauer, K., Veronig, A.M., Temmer, M., Podladchikova, T.: 2019, Statistics of coronal dimmings associated with coronal mass ejections. II. Relationship between coronal dimmings and their associated CMEs. Astrophys. J. 874(2), 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dolla, L.R., Zhukov, A.N.: 2011, On the nature of the spectral line broadening in solar coronal dimmings. Astrophys. J. 730(2), 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162(1-2), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Doschek, G.A.: 2012, The dynamics and heating of active region loops. Astrophys. J. 754(2), 153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Doschek, G.A., Feldman, U., Bohlin, J.D.: 1976, Doppler wavelength shifts of transition zone lines measured in Skylab solar spectra. Astrophys. J. Lett. 205, L177. DOI. ADS.

    Article  ADS  Google Scholar 

  • Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: 2008, Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686(2), 1362. DOI. ADS.

    Article  ADS  Google Scholar 

  • Edwards, S.J., Parnell, C.E., Harra, L.K., Culhane, J.L., Brooks, D.H.: 2016, A comparison of global magnetic field skeletons and active-region upflows. Solar Phys. 291(1), 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fazakerley, A.N., Harra, L.K., van Driel-Gesztelyi, L.: 2016, An investigation of the sources of Earth-directed solar wind during carrington rotation 2053. Astrophys. J. 823(2), 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Feldman, U., Widing, K.G.: 2003, Elemental abundances in the solar upper atmosphere derived by spectroscopic means. Space Sci. Rev. 107(3), 665. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204(1-4), 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fu, H., Xia, L., Li, B., Huang, Z., Jiao, F., Mou, C.: 2014, Measurements of outflow velocities in on-disk plumes from EIS/Hinode observations. Astrophys. J. 794(2), 109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fu, H., Li, B., Li, X., Huang, Z., Mou, C., Jiao, F., Xia, L.: 2015, Coronal sources and in situ properties of the solar winds sampled by ACE during 1999 – 2008. Solar Phys. 290(5), 1399. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fu, H., Madjarska, M.S., Xia, L., Li, B., Huang, Z., Wangguan, Z.: 2017, Charge states and FIP bias of the solar wind from coronal holes, active regions, and quiet Sun. Astrophys. J. 836(2), 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fu, H., Madjarska, M.S., Li, B., Xia, L., Huang, Z.: 2018, Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun. Mon. Not. Roy. Astron. Soc. 478(2), 1884. DOI. ADS.

    Article  ADS  Google Scholar 

  • Galsgaard, K., Madjarska, M.S., Vanninathan, K., Huang, Z., Presmann, M.: 2015, Active region upflows. II. Data driven magnetohydrodynamic modelling. Astron. Astrophys. 584, A39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gudiksen, B.V., Nordlund, Å.: 2005, An ab initio approach to the solar coronal heating problem. Astrophys. J. 618(2), 1020. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hansteen, V.H., Hara, H., De Pontieu, B., Carlsson, M.: 2010, On redshifts and blueshifts in the transition region and corona. Astrophys. J. 718(2), 1070. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R., Mariska, J.T., Doschek, G.A.: 2008, Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophys. J. Lett. 678(1), L67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K.: 2012, The role of coronal hole and active region boundaries in solar wind formation. In: Bellot Rubio, L., Reale, F., Carlsson, M. (eds.) 4th Hinode Science Meeting: Unsolved Problems and Recent Insights, CS-455, Astron. Soc. Pacific, San Francisco, 315. ADS.

    Google Scholar 

  • Harra, L.K., Sterling, A.C.: 2001, Material outflows from coronal intensity “dimming regions” during coronal mass ejection onset. Astrophys. J. Lett. 561(2), L215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K., Hara, H., Imada, S., Young, P.R., Williams, D.R., Sterling, A.C., Korendyke, C., Attrill, G.D.R.: 2007, Coronal dimming observed with Hinode: outflows related to a coronal mass ejection. Pub. Astron. Soc. Japan 59, S801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: 2008, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676(2), L147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K., Magara, T., Hara, H., Tsuneta, S., Okamoto, T.J., Wallace, A.J.: 2010, Response of the solar atmosphere to the emergence of ‘serpentine’ magnetic field. Solar Phys. 263(1-2), 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K., Mandrini, C.H., Dasso, S., Gulisano, A.M., Steed, K., Imada, S.: 2011, Determining the solar source of a magnetic cloud using a velocity difference technique. Solar Phys. 268(1), 213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K., Archontis, V., Pedram, E., Hood, A.W., Shelton, D.L., van Driel-Gesztelyi, L.: 2012, The creation of outflowing plasma in the corona at emerging flux regions: comparing observations and simulations. Solar Phys. 278(1), 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L.K., Ugarte-Urra, I., De Rosa, M., Mand rini, C., van Driel-Gesztelyi, L., Baker, D., Culhane, J.L., Démoulin, P.: 2017, A study of the long term evolution in active region upflows. Pub. Astron. Soc. Japan 69(3), 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harra, L., Brooks, D.H., Bale, S.D., Mandrini, C.H., Barczynski, K., Sharma, R., Badman, S.T., Vargas Dominguez, S., Pulupa, M.: 2021, The active region source of a type III radio storm observed by Parker Solar Probe during Encounter 2. Astron. Astrophys. DOI, in press. arXiv.

    Article  Google Scholar 

  • Harrison, R.A., Lyons, M.: 2000, A spectroscopic study of coronal dimming associated with a coronal mass ejection. Astron. Astrophys. 358, 1097. ADS.

    ADS  Google Scholar 

  • Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., Cutler, R.M., Fludra, A., Hayes, R.W., Kent, B.J., Lang, J., Parker, D.J., Payne, J., Pike, C.D., Peskett, S.C., Richards, A.G., Gulhane, J.L., Norman, K., Breeveld, A.A., Breeveld, E.R., Al Janabi, K.F., McCalden, A.J., Parkinson, J.H., Self, D.G., Thomas, P.D., Poland, A.I., Thomas, R.J., Thompson, W.T., Kjeldseth-Moe, O., Brekke, P., Karud, J., Maltby, P., Aschenbach, B., Bräuninger, H., Kühne, M., Hollandt, J., Siegmund, O.H.W., Huber, M.C.E., Gabriel, A.H., Mason, H.E., Bromage, B.J.I.: 1995, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Solar Phys. 162(1-2), 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Bryans, P., Simnett, G.M., Lyons, M.: 2003, Coronal dimming and the coronal mass ejection onset. Astron. Astrophys. 400, 1071. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hassler, D.M., Dammasch, I.E., Lemaire, P., Brekke, P., Curdt, W., Mason, H.E., Vial, J.-C., Wilhelm, K.: 1999, Solar wind outflow and the chromospheric magnetic network. Science 283, 810. DOI. ADS.

    Article  ADS  Google Scholar 

  • He, J.-S., Tu, C.-Y., Marsch, E.: 2008, Modeling of solar wind in the coronal funnel with mass and energy supplied at 5 mm. Solar Phys. 250(1), 147. DOI. ADS.

    Article  ADS  Google Scholar 

  • He, J.-S., Marsch, E., Tu, C.-Y., Guo, L.-J., Tian, H.: 2010, Intermittent outflows at the edge of an active region – a possible source of the solar wind? Astron. Astrophys. 516, A14. DOI. ADS.

    Article  Google Scholar 

  • Hudson, H.S., Acton, L.W., Freeland, S.L.: 1996, A long-duration solar flare with mass ejection and global consequences. Astrophys. J. 470, 629. DOI. ADS.

    Article  ADS  Google Scholar 

  • Imada, S., Hara, H., Watanabe, T., Kamio, S., Asai, A., Matsuzaki, K., Harra, L.K., Mariska, J.T.: 2007, Discovery of a temperature-dependent upflow in the plage region during a gradual phase of the X-class flare. Publ. Astron. Soc. Japan 59, S793. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janardhan, P., Tripathi, D., Mason, H.E.: 2008, The solar wind disappearance event of 11 May 1999: source region evolution. Astron. Astrophys. 488(1), L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jin, M., Ding, M.D., Chen, P.F., Fang, C., Imada, S.: 2009, Coronal mass ejection induced outflows observed with Hinode/EIS. Astrophys. J. 702(1), 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kamio, S., Peter, H., Curdt, W., Solanki, S.K.: 2011, Continuous upflows and sporadic downflows observed in active regions. Astron. Astrophys. 532, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kiddie, G., De Moortel, I., Del Zanna, G., McIntosh, S.W., Whittaker, I.: 2012, Propagating disturbances in coronal loops: a detailed analysis of propagation speeds. Solar Phys. 279(2), 427. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kitagawa, N., Yokoyama, T.: 2015, Electron density of active region outflows measured by the EUV imaging spectrometer on board Hinode. Astrophys. J. 805(2), 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A.: 2012, The role of type II spicules in the upper solar atmosphere. J. Geophys. Res. 117(A12), A12102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klimchuk, J.A., Bradshaw, S.J.: 2014, Are chromospheric nanoflares a primary source of coronal plasma? Astrophys. J. 791(1), 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ko, Y.-K., Raymond, J.C., Zurbuchen, T.H., Riley, P., Raines, J.M., Strachan, L.: 2006, Abundance variation at the vicinity of an active region and the coronal origin of the slow solar wind. Astrophys. J. 646(2), 1275. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kohl, J.L., Esser, R., Gardner, L.D., Habbal, S., Daigneau, P.S., Dennis, E.F., Nystrom, G.U., Panasyuk, A., Raymond, J.C., Smith, P.L., Strachan, L., van Ballegooijen, A.A., Noci, G., Fineschi, S., Romoli, M., Ciaravella, A., Modigliani, A., Huber, M.C.E., Antonucci, E., Benna, C., Giordano, S., Tondello, G., Nicolosi, P., Naletto, G., Pernechele, C., Spadaro, D., Poletto, G., Livi, S., von der Lühe, O., Geiss, J., Timothy, J.G., Gloeckler, G., Allegra, A., Basile, G., Brusa, R., Wood, B., Siegmund, O.H.W., Fowler, W., Fisher, R., Jhabvala, M.: 1995, The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Solar Phys. 162(1-2), 313. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kojima, M., Fujiki, K., Ohmi, T., Tokumaru, M., Yokobe, A., Hakamada, K.: 1999, Low-speed solar wind from the vicinity of solar active regions. J. Geophys. Res. 104(A8), 16993. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (solar-B) mission: an overview. Solar Phys. 243(1), 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Banerjee, D., Singh, J.: 2012, Oscillations in active region fan loops: observations from EIS/ Hinode and AIA/SDO. Solar Phys. 281(1), 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Landi, E., Hutton, R., Brage, T., Li, W.: 2020, Hinode/EIS measurements of active-region magnetic fields. Astrophys. J. 904(2), 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemaire, P., Wilhelm, K., Curdt, W., Schule, U., Marsch, E., Poland, A.I., Jordan, S.D., Thomas, R.J., Hassler, D.M., Vial, J.C., Kuhne, M., Huber, M.C.E., Siegmund, O.H.W., Gabriel, A., Timothy, J.G., Grewing, M.: 1997, First results of the SUMER telescope and spectrometer on SOHO – II. Imagery and data management. Solar Phys. 170(1), 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, L.P., Peter, H.: 2019, Plasma injection into a solar coronal loop. Astron. Astrophys. 626, A98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, W., Grumer, J., Yang, Y., Brage, T., Yao, K., Chen, C., Watanabe, T., Jönsson, P., Lundstedt, H., Hutton, R., Zou, Y.: 2015, A novel method to determine magnetic fields in low-density plasma facilitated through accidental degeneracy of quantum states in Fe9+. Astrophys. J. 807(1), 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, W., Yang, Y., Tu, B., Xiao, J., Grumer, J., Brage, T., Watanabe, T., Hutton, R., Zou, Y.: 2016, Atomic-level pseudo-degeneracy of atomic levels giving transitions induced by magnetic fields, of importance for determining the field strengths in the solar corona. Astrophys. J. 826(2), 219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liewer, P.C., Neugebauer, M., Zurbuchen, T.: 2004, Characteristics of active-region sources of solar wind near solar maximum. Solar Phys. 223(1-2), 209. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, S., Su, J.T.: 2014, Multi-channel observations of plasma outflows and the associated small-scale magnetic field cancellations on the edges of an active region. Astrophys. Space Sci. 351(2), 417. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lörinčík, J., Dudík, J., Aulanier, G., Schmieder, B., Golub, L.: 2021, Imaging evidence for solar wind outflows originating from a coronal mass ejection footpoint. Astrophys. J. 906(1), 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Macneil, A.R., Owen, C.J., Baker, D., Brooks, D.H., Harra, L.K., Long, D.M., Wicks, R.T.: 2019, Active region modulation of coronal hole solar wind. Astrophys. J. 887(2), 146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Nakwacki, M.S., Attrill, G., van Driel-Gesztelyi, L., Démoulin, P., Dasso, S., Elliott, H.: 2007, Are CME-related dimmings always a simple signature of interplanetary magnetic cloud footpoints? Solar Phys. 244(1-2), 25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Nuevo, F.A., Vásquez, A.M., Démoulin, P., van Driel-Gesztelyi, L., Baker, D., Culhane, J.L., Cristiani, G.D., Pick, M.: 2014, How can active region plasma escape into the solar wind from below a closed helmet streamer? Solar Phys. 289(11), 4151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Baker, D., Démoulin, P., Cristiani, G.D., van Driel-Gesztelyi, L., Vargas Domínguez, S., Nuevo, F.A., Vásquez, A.M., Pick, M.: 2015, Parallel evolution of quasi-separatrix layers and active region upflows. Astrophys. J. 809(1), 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marsch, E., Wiegelmann, T., Xia, L.D.: 2004, Coronal plasma flows and magnetic fields in solar active regions. Combined observations from SOHO and NSO/Kitt Peak. Astron. Astrophys. 428, 629. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marsch, E., Tian, H., Sun, J., Curdt, W., Wiegelmann, T.: 2008, Plasma flows guided by strong magnetic fields in the solar corona. Astrophys. J. 685(2), 1262. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martínez-Sykora, J., De Pontieu, B., Hansteen, V., McIntosh, S.W.: 2011, What do spectral line profile asymmetries tell us about the solar atmosphere? Astrophys. J. 732(2), 84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martínez-Sykora, J., De Pontieu, B., Hansteen, V.H., Rouppe van der Voort, L., Carlsson, M., Pereira, T.M.D.: 2017, On the generation of solar spicules and Alfvénic waves. Science 356(6344), 1269. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mason, J.P., Woods, T.N., Caspi, A., Thompson, B.J., Hock, R.A.: 2014, Mechanisms and observations of coronal dimming for the 2010 August 7 event. Astrophys. J. 789(1), 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W.: 2009, The inconvenient truth about coronal dimmings. Astrophys. J. 693(2), 1306. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., De Pontieu, B.: 2009a, High-speed transition region and coronal upflows in the quiet Sun. Astrophys. J. 707(1), 524. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., De Pontieu, B.: 2009b, Observing episodic coronal heating events rooted in chromospheric activity. Astrophys. J. Lett. 706(1), L80. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., De Pontieu, B., Leamon, R.J.: 2010, The impact of new EUV diagnostics on CME-related kinematics. Solar Phys. 265(1-2), 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Tian, H., Sechler, M., De Pontieu, B.: 2012, On the Doppler velocity of emission line profiles formed in the “coronal contraflow” that is the chromosphere-corona mass cycle. Astrophys. J. 749(1), 60. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S.K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D.M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J.C., Wimmer-Schweingruber, R.F., Marsch, E., Velli, M., De Groof, A., Walsh, A., Williams, D.: 2020, The Solar Orbiter mission. Science overview. Astron. Astrophys. 642, A1. DOI. ADS.

    Article  Google Scholar 

  • Murray, M.J., Baker, D., van Driel-Gesztelyi, L., Sun, J.: 2010, Outflows at the edges of an active region in a coronal hole: a signature of active region expansion? Solar Phys. 261(2), 253. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ni, L., Ji, H., Murphy, N.A., Jara-Almonte, J.: 2020, Magnetic reconnection in partially ionized plasmas. Proc. Roy. Soc. A 476, 90867. DOI. ADS.

    Article  MathSciNet  ADS  Google Scholar 

  • Nishizuka, N., Hara, H.: 2011, Spectroscopic observations of continuous outflows and propagating waves from NOAA 10942 with Extreme Ultraviolet Imaging Spectrometer/Hinode. Astrophys. J. Lett. 737(2), L43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Wang, T.J., Davila, J.M.: 2012, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754(2), 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panesar, N.K., Sterling, A.C., Moore, R.L., Tiwari, S.K., De Pontieu, B., Norton, A.A.: 2018, IRIS and SDO observations of solar jetlets resulting from network-edge flux cancelation. Astrophys. J. Lett. 868(2), L27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Klimchuk, J.A., Young, P.R.: 2014, Core and wing densities of asymmetric coronal spectral profiles: implications for the mass supply of the solar corona. Astrophys. J. 781(2), 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pereira, T.M.D., De Pontieu, B., Carlsson, M., Hansteen, V., Tarbell, T.D., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Wülser, J.P., Martínez-Sykora, J., Kleint, L., Golub, L., McKillop, S., Reeves, K.K., Saar, S., Testa, P., Tian, H., Jaeggli, S., Kankelborg, C.: 2014, An interface region imaging spectrograph first view on solar spicules. Astrophys. J. Lett. 792(1), L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Peter, H.: 2010, Asymmetries of solar coronal extreme ultraviolet emission lines. Astron. Astrophys. 521, A51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Peter, H., Gudiksen, B.V., Nordlund, Å.: 2004, Coronal heating through braiding of magnetic field lines. Astrophys. J. Lett. 617(1), L85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Peter, H., Gudiksen, B.V., Nordlund, Å.: 2006, Forward modeling of the corona of the sun and solar-like stars: from a three-dimensional magnetohydrodynamic model to synthetic extreme-ultraviolet spectra. Astrophys. J. 638(2), 1086. DOI. ADS.

    Article  ADS  Google Scholar 

  • Peter, H., Judge, P.G.: 1999, On the Doppler shifts of solar ultraviolet emission lines. Astrophys. J. 522(2), 1148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Polito, V., De Pontieu, B., Testa, P., Brooks, D.H., Hansteen, V.: 2020, IRIS observations of the low-atmosphere counterparts of active region outflows. Astrophys. J. 903(1), 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rachmeler, L.A., Winebarger, A.R., Savage, S.L., Golub, L., Kobayashi, K., Vigil, G.D., Brooks, D.H., Cirtain, J.W., De Pontieu, B., McKenzie, D.E., Morton, R.J., Peter, H., Testa, P., Tiwari, S.K., Walsh, R.W., Warren, H.P., Alexander, C., Ansell, D., Beabout, B.L., Beabout, D.L., Bethge, C.W., Champey, P.R., Cheimets, P.N., Cooper, M.A., Creel, H.K., Gates, R., Gomez, C., Guillory, A., Haight, H., Hogue, W.D., Holloway, T., Hyde, D.W., Kenyon, R., Marshall, J.N., McCracken, J.E., McCracken, K., Mitchell, K.O., Ordway, M., Owen, T., Ranganathan, J., Robertson, B.A., Payne, M.J., Podgorski, W., Pryor, J., Samra, J., Sloan, M.D., Soohoo, H.A., Steele, D.B., Thompson, F.V., Thornton, G.S., Watkinson, B., Windt, D.: 2019, The High-Resolution Coronal Imager, Flight 2.1. Solar Phys. 294(12), 174. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raju, K.P.: 2009, Relative velocities and linewidths in a coronal hole and outside. Solar Phys. 255(1), 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raouafi, N.-E., Stenborg, G.: 2014, Role of transients in the sustainability of solar coronal plumes. Astrophys. J. 787(2), 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reinard, A.A., Biesecker, D.A.: 2008, Coronal mass ejection-associated coronal dimmings. Astrophys. J. 674(1), 576. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rouppe van der Voort, L.H.M., Rutten, R.J., Sütterlin, P., Sloover, P.J., Krijger, J.M.: 2003, La Palma observations of umbral flashes. Astron. Astrophys. 403, 277. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rouppe van der Voort, L., De Pontieu, B., Pereira, T.M.D., Carlsson, M., Hansteen, V.: 2015, Heating signatures in the disk counterparts of solar spicules in interface region imaging spectrograph observations. Astrophys. J. Lett. 799(1), L3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E.E., Lundquist, L.L., Tsuneta, S., Harra, L.K., Katsukawa, Y., Kubo, M., Hara, H., Matsuzaki, K., Shimojo, M., Bookbinder, J.A., Golub, L., Korreck, K.E., Su, Y., Shibasaki, K., Shimizu, T., Nakatani, I.: 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science 318(5856), 1585. DOI. ADS.

    Article  ADS  Google Scholar 

  • Samanta, T., Tian, H., Yurchyshyn, V., Peter, H., Cao, W., Sterling, A., Erdélyi, R., Ahn, K., Feng, S., Utz, D., Banerjee, D., Chen, Y.: 2019, Generation of solar spicules and subsequent atmospheric heating. Science 366(6467), 890. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scott, J.T., Martens, P.C.H., Tarr, L.: 2013, Outflows and dark bands at arcade-like active region core boundaries. Astrophys. J. 765(2), 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sharma, A., Tripathi, D., Erdélyi, R., Gupta, G.R., Ahmed, G.A.: 2020, Wave amplitude modulation in fan loops as observed by AIA/SDO. Astron. Astrophys. 638, A6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y.: 2021, Observation and modeling of solar jets. Proc. Roy. Soc. A 477, 20200217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shimizu, T., Imada, S., Kawate, T., Ichimoto, K., Suematsu, Y., Hara, H., Katsukawa, Y., Kubo, M., Toriumi, S., Watanabe, T., Yokoyama, T., Korendyke, C.M., Warren, H.P., Tarbell, T., De Pontieu, B., Teriaca, L., Schühle, U.H., Solanki, S., Harra, L.K., Matthews, S., Fludra, A., Auchère, F., Andretta, V., Naletto, G., Zhukov, A.: 2019, The solar-C_EUVST mission. In: UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI, Soc. Photo-Opt. Instrum. Eng. (SPIE) 11118, 1111807. DOI. ADS.

    Chapter  Google Scholar 

  • Si, R., Brage, T., Li, W., Grumer, J., Li, M., Hutton, R.: 2020, A first spectroscopic measurement of the magnetic-field strength for an active region of the solar corona. Astrophys. J. Lett. 898(2), L34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Skogsrud, H., Rouppe van der Voort, L., De Pontieu, B.: 2016, On the active region bright grains observed in the transition region imaging channels of IRIS. Astrophys. J. 817(2), 124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Slemzin, V., Harra, L., Urnov, A., Kuzin, S., Goryaev, F., Berghmans, D.: 2013, Signatures of slow solar wind streams from active regions in the inner corona. Solar Phys. 286(1), 157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Song, H., Yao, S.: 2020, Characteristics and applications of interplanetary coronal mass ejection composition. Sci. China, Technol. Sci. 63(11), 2171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Konkol, P., Murawski, K., Dwivedi, B.N., Mohan, A.: 2014, On thermal-pulse-driven plasma flows in coronal funnels as observed by the Hinode/ EUV Imaging Spectrometer (EIS). Solar Phys. 289(12), 4501. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stansby, D., Baker, D., Brooks, D.H., Owen, C.J.: 2020, Directly comparing coronal and solar wind elemental fractionation. Astron. Astrophys. 640, A28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sterling, A.C., Hudson, H.S.: 1997, Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. Lett. 491(1), L55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Stucki, K., Solanki, S.K., Schühle, U., Rüedi, I., Wilhelm, K., Stenflo, J.O., Brković, A., Huber, M.C.E.: 2000, Comparison of far-ultraviolet emission lines formed in coronal holes and the quiet Sun. Astron. Astrophys. 363, 1145. ADS.

    ADS  Google Scholar 

  • Su, J.T., Liu, Y., Shen, Y.D., Liu, S., Mao, X.J.: 2012, Observation of high-speed outflows in coronal loops associated with photospheric magnetic field evolution. Astrophys. J. 760(1), 82. DOI. ADS.

    Article  ADS  Google Scholar 

  • Teriaca, L., Banerjee, D., Doyle, J.G.: 1999, SUMER observations of Doppler shift in the quiet Sun and in an active region. Astron. Astrophys. 349, 636. ADS.

    ADS  Google Scholar 

  • Thompson, B.J., Cliver, E.W., Nitta, N., Delannée, C., Delaboudinière, J.-P.: 2000, Coronal dimmings and energetic CMEs in April-May 1998. Geophys. Res. Lett. 27(10), 1431. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H.: 2017, Probing the solar transition region: current status and future perspectives. Res. Astron. Astrophys. 17(11), 110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., De Pontieu, B.: 2011, The spectroscopic signature of quasi-periodic upflows in active region timeseries. Astrophys. J. Lett. 727(2), L37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Tu, C.-Y., Marsch, E., He, J.-S., Zhou, G.-Q.: 2008, Signature of mass supply to quiet coronal loops. Astron. Astrophys. 478(3), 915. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Marsch, E., Curdt, W., He, J.: 2009, Upflows in funnel-like legs of coronal magnetic loops. Astrophys. J. 704(1), 883. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., Tu, C., Marsch, E., He, J., Kamio, S.: 2010, The nascent fast solar wind observed by the EUV imaging spectrometer on board Hinode. Astrophys. J. Lett. 709(1), L88. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., Habbal, S.R., He, J.: 2011a, Observation of high-speed outflow on plume-like structures of the quiet sun and coronal holes with solar dynamics observatory/atmospheric imaging assembly. Astrophys. J. 736(2), 130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., De Pontieu, B., Martínez-Sykora, J., Sechler, M., Wang, X.: 2011b, Two components of the solar coronal emission revealed by extreme-ultraviolet spectroscopic observations. Astrophys. J. 738(1), 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., Wang, T., Ofman, L., De Pontieu, B., Innes, D.E., Peter, H.: 2012a, Persistent Doppler shift oscillations observed with Hinode/EIS in the solar corona: spectroscopic signatures of Alfvénic waves and recurring upflows. Astrophys. J. 759(2), 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., McIntosh, S.W., Xia, L., He, J., Wang, X.: 2012b, What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations? Astrophys. J. 748(2), 106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., DeLuca, E., Reeves, K.K., McKillop, S., De Pontieu, B., Martínez-Sykora, J., Carlsson, M., Hansteen, V., Kleint, L., Cheung, M., Golub, L., Saar, S., Testa, P., Weber, M., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Kankelborg, C., Jaeggli, S., McIntosh, S.W.: 2014a, High-resolution observations of the shock wave behavior for sunspot oscillations with the interface region imaging spectrograph. Astrophys. J. 786(2), 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tian, H., DeLuca, E.E., Cranmer, S.R., De Pontieu, B., Peter, H., Martínez-Sykora, J., Golub, L., McKillop, S., Reeves, K.K., Miralles, M.P., McCauley, P., Saar, S., Testa, P., Weber, M., Murphy, N., Lemen, J., Title, A., Boerner, P., Hurlburt, N., Tarbell, T.D., Wuelser, J.P., Kleint, L., Kankelborg, C., Jaeggli, S., Carlsson, M., Hansteen, V., McIntosh, S.W.: 2014b, Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346(6207), 1255711. DOI. ADS.

    Article  Google Scholar 

  • Tripathi, D., Klimchuk, J.A.: 2013, Asymmetries in coronal spectral lines and emission measure distribution. Astrophys. J. 779(1), 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tripathi, D., Mason, H.E., Dwivedi, B.N., del Zanna, G., Young, P.R.: 2009, Active region loops: Hinode/extreme-ultraviolet imaging spectrometer observations. Astrophys. J. 694(2), 1256. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Zhou, C., Marsch, E., Xia, L.-D., Zhao, L., Wang, J.-X., Wilhelm, K.: 2005a, Solar wind origin in coronal funnels. Science 308(5721), 519. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Zhou, C., Marsch, E., Wilhelm, K., Xia, L.-D., Zhao, L., Wang, J.-X.: 2005b, The height of solar wind origin in coronal funnels and a 3-D scenario for solar wind formation. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, SP-592, ESA, Noordwijk, 131. ADS.

    Google Scholar 

  • Ugarte-Urra, I., Warren, H.P.: 2011, Temporal variability of active region outflows. Astrophys. J. 730(1), 37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Uritsky, V.M., Davila, J.M., Viall, N.M., Ofman, L.: 2013, Measuring temperature-dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and the surfing transform technique. Astrophys. J. 778(1), 26. DOI. ADS.

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., Démoulin, P., Mandrini, C.H., DeRosa, M.L., Rouillard, A.P., Opitz, A., Stenborg, G., Vourlidas, A., Brooks, D.H.: 2012, Magnetic topology of active regions and coronal holes: implications for coronal outflows and the solar wind. Solar Phys. 281(1), 237. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vanninathan, K., Madjarska, M.S., Galsgaard, K., Huang, Z., Doyle, J.G.: 2015, Active region upflows. I. Multi-instrument observations. Astron. Astrophys. 584, A38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vanninathan, K., Veronig, A.M., Dissauer, K., Temmer, M.: 2018, Plasma diagnostics of coronal dimming events. Astrophys. J. 857(1), 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Velli, M., Harra, L.K., Vourlidas, A., Schwadron, N., Panasenco, O., Liewer, P.C., Müller, D., Zouganelis, I., St Cyr, O.C., Gilbert, H., Nieves-Chinchilla, T., Auchère, F., Berghmans, D., Fludra, A., Horbury, T.S., Howard, R.A., Krucker, S., Maksimovic, M., Owen, C.J., Rodríguez-Pacheco, J., Romoli, M., Solanki, S.K., Wimmer-Schweingruber, R.F., Bale, S., Kasper, J., McComas, D.J., Raouafi, N., Martinez-Pillet, V., Walsh, A.P., De Groof, A., Williams, D.: 2020, Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. Astron. Astrophys. 642, A4. DOI. ADS.

    Article  Google Scholar 

  • Veronig, A.M., Gömöry, P., Dissauer, K., Temmer, M., Vanninathan, K.: 2019, Spectroscopy and differential emission measure diagnostics of a coronal dimming associated with a fast halo CME. Astrophys. J. 879(2), 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Marsh, M., Foullon, C., Van Doorsselaere, T., De Moortel, I., Hood, A.W., Nakariakov, V.M.: 2010, Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves. Astrophys. J. Lett. 724(2), L194. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T.J., Ofman, L., Davila, J.M.: 2009, Propagating slow magnetoacoustic waves in coronal loops observed by Hinode/EIS. Astrophys. J. 696(2), 1448. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Davila, J.M.: 2013, Three-dimensional magnetohydrodynamic modeling of propagating disturbances in fan-like coronal loops. Astrophys. J. Lett. 775(1), L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T.J., Ofman, L., Davila, J.M., Mariska, J.T.: 2009, Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astron. Astrophys. 503(3), L25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, X., McIntosh, S.W., Curdt, W., Tian, H., Peter, H., Xia, L.-D.: 2013, Temperature dependence of ultraviolet line parameters in network and internetwork regions of the quiet Sun and coronal holes. Astron. Astrophys. 557, A126. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warren, H.P., Ugarte-Urra, I., Young, P.R., Stenborg, G.: 2011, The temperature dependence of solar active region outflows. Astrophys. J. 727(1), 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Xia, L.D., Marsch, E.: 2005, Links between magnetic fields and plasma flows in a coronal hole. Astron. Astrophys. 432(1), L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing, M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kühne, M., Timothy, J.G., Hassler, D.M., Siegmund, O.H.W.: 1995, SUMER – solar ultraviolet measurements of emitted radiation. Solar Phys. 162(1-2), 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Dammasch, I.E., Marsch, E., Hassler, D.M.: 2000, On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749. ADS.

    ADS  Google Scholar 

  • Winebarger, A.R., Warren, H., van Ballegooijen, A., DeLuca, E.E., Golub, L.: 2002, Steady flows detected in extreme-ultraviolet loops. Astrophys. J. Lett. 567(1), L89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Extreme ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys. 275(1-2), 115. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xia, L.D., Marsch, E., Curdt, W.: 2003, On the outflow in an equatorial coronal hole. Astron. Astrophys. 399, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xia, L.D., Marsch, E., Wilhelm, K.: 2004, On the network structures in solar equatorial coronal holes. Observations of SUMER and MDI on SOHO. Astron. Astrophys. 424, 1025. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xing, C., Cheng, X., Ding, M.D.: 2020, Evolution of the toroidal flux of CME flux ropes during eruption. The Innovation 1, 100059. DOI.

    Article  Google Scholar 

  • Yang, Z., Bethge, C., Tian, H., Tomczyk, S., Morton, R., Del Zanna, G., McIntosh, S.W., Karak, B.B., Gibson, S., Samanta, T., He, J., Chen, Y., Wang, L.: 2020a, Global maps of the magnetic field in the solar corona. Science 369(6504), 694. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Z., Tian, H., Tomczyk, S., Morton, R., Bai, X., Samanta, T., Chen, Y.: 2020b, Mapping the magnetic field in the solar corona through magnetoseismology. Sci. China, Technol. Sci. 63(11), 2357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Young, P.R.: 2015, Dark jets in solar coronal holes. Astrophys. J. 801(2), 124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Young, P.R., O’Dwyer, B., Mason, H.E.: 2012, Velocity measurements for a solar active region fan loop from Hinode/EIS observations. Astrophys. J. 744(1), 14. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Nakariakov, V.M.: 2012, Measuring the apparent phase speed of propagating EUV disturbances. Astron. Astrophys. 543, A9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zangrilli, L., Poletto, G.: 2012, A SOHO/UVCS study of coronal outflows at the edge of an active region complex. Astron. Astrophys. 545, A8. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zangrilli, L., Poletto, G.: 2016, Evolution of active region outflows throughout an active region lifetime. Astron. Astrophys. 594, A40. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Zheng, R.S.: 2020, Remote coronal dimmings related to a circular-ribbon flare. Astron. Astrophys. 633, A142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Yang, S., Liu, Y., Sun, X.: 2012, Emerging dimmings of active regions observed by the solar dynamics observatory. Astrophys. J. Lett. 760(2), L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheng, R., Chen, Y., Wang, B.: 2016, Slipping magnetic reconnections with multiple flare ribbons during an X-class solar flare. Astrophys. J. 823(2), 136. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

H. Tian is supported by NSFC grants 11825301 and 11790304. The work of D.H. Brooks was performed under contract to the Naval Research Laboratory and was funded by the NASA Hinode program. D. Baker is funded under STFC consolidated grant number ST/S000240/1. L. Xia is supported by NSFC grants 41974201 and 41627806. H. Tian acknowledges support from the UCL-PKU strategic partner funds during his visit to MSSL. This invited review article is based partly on the AAS/SPD Karen Harvey Prize Lecture of 2020, the presentation file of which is available at spd.aas.org/prizes/harvey/previous.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Tian.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Harra, L., Baker, D. et al. Upflows in the Upper Solar Atmosphere. Sol Phys 296, 47 (2021). https://doi.org/10.1007/s11207-021-01792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01792-7

Keywords

Navigation