Skip to main content

Advertisement

Log in

Subsurface Horizontal Flows During Solar Cycles 24 and 25 with Large-Tile Ring-Diagram Analysis

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the large-scale subsurface flows to a depth of about 32 Mm covering the near-surface shear layer (NSSL). The flows were derived with a ring-diagram analysis applied to Helioseismic and Magnetic Imager (HMI) Dopplergrams using tiles with 30 diameter instead of the commonly used 15 ones. This allows us to determine flows at greater depths in exchange for coarser spatial resolution. We confirm that the average zonal flow increases with increasing depth and reaches a plateau in the NSSL. There is a hint of a local maximum or saddle point much closer to the surface at about 8 Mm. The average meridional flow is poleward at all depths in both hemispheres. The average amplitude is \(14.3 \pm 0.2\) m s−1 at 30 and \(12.4 \pm 0.2\) m s−1 at 15 latitude at depths of 20 Mm and shallower, while amplitudes at these latitudes decrease at greater depths. The solar-cycle variation of the zonal and meridional flow are clearly noticeable from the surface throughout the NSSL. The dominant features of the zonal flow are bands of faster-than-average flow associated with Solar Cycles 24 and 25. The onset of the fast bands happens almost simultaneously at all depths. For Cycle 25, the fast bands appear in the southern hemisphere about one year before those in the northern one and both fast bands appear several years before magnetic activity appeared at the surface in either hemisphere. The meridional flow shows a similar pattern after subtracting the temporal mean at each latitude. The bands of converging residual meridional flow move from mid- to low latitudes during a solar cycle. These bands appear at low latitudes almost at the same time at all depths, similar to the fast bands of the zonal flow. However, at 45 latitude they appear first in layers near 32 Mm and about two years later at the solar surface, as if the pattern were rising through the outer layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Baldner, C.S., Schou, J.: 2012, Effects of asymmetric flows in solar convection on oscillation modes. Astrophys. J. Lett. 760, L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Barekat, A., Schou, J., Gizon, L.: 2014, The radial gradient of the near-surface shear layer of the Sun. Astron. Astrophys. 570, L12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M., Bogart, R.S.: 2004, Ring-diagram analysis of the structure of solar active regions. Astrophys. J. 610, 1157. DOI. ADS.

    Article  ADS  Google Scholar 

  • Basu, S., Antia, H.M., Tripathy, S.C.: 1999, Ring diagram analysis of near-surface flows in the Sun. Astrophys. J. 512, 458. DOI. ADS.

    Article  ADS  Google Scholar 

  • Belucz, B., Dikpati, M., Forgács-Dajka, E.: 2015, A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys. J. 806, 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011a, HMI ring diagram analysis I. The processing pipeline. J. Phys. Conf. Ser. 271, 012008. DOI. ADS.

    Article  Google Scholar 

  • Bogart, R.S., Baldner, C., Basu, S., Haber, D.A., Rabello-Soares, M.C.: 2011b, HMI ring diagram analysis II. Data products. J. Phys. Conf. Ser. 271, 012009. DOI. ADS.

    Article  Google Scholar 

  • Böning, V.G.A., Roth, M., Jackiewicz, J., Kholikov, S.: 2017, Inversions for deep solar meridional flow using spherical born kernels. Astrophys. J. 845, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Broomhall, A.-M., Chatterjee, P., Howe, R., Norton, A.A., Thompson, M.J.: 2015, The Sun’s Interior Structure and Dynamics, and the Solar Cycle 53, 191. DOI. ADS.

    Book  Google Scholar 

  • Chakraborty, S., Choudhuri, A.R., Chatterjee, P.: 2009, Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2020, Dynamo models of the solar cycle. Living Rev. Solar Phys. 17, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, R., Zhao, J.: 2017, A comprehensive method to measure solar meridional circulation and the center-to-limb effect using time-distance helioseismology. Astrophys. J. 849, 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, R., Zhao, J.: 2018, Temporal evolution of solar meridional flow in the deep interior during 2010-2018. In: Catalyzing Solar Connections, 55. ADS.

    Google Scholar 

  • Corbard, T., Thompson, M.J.: 2002, The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Solar Phys. 205, 211. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dikpati, M., de Toma, G., Gilman, P.A., Arge, C.N., White, O.R.: 2004, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Durney, B.R.: 2000, On the torsional oscillations in Babcock-Leighton solar dynamo models. Solar Phys. 196, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gizon, L., Cameron, R.H., Pourabdian, M., Liang, Z.-C., Fournier, D., Birch, A.C., Hanson, C.S.: 2020, Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469. DOI. ADS.

    Article  ADS  Google Scholar 

  • González Hernández, I., Komm, R., Hill, F., Howe, R., Corbard, T., Haber, D.A.: 2006, Meridional circulation variability from large-aperture ring-diagram analysis of global oscillation network group and Michelson Doppler imager data. Astrophys. J. 638, 576. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greer, B.J., Hindman, B.W., Toomre, J.: 2016a, Helioseismic imaging of supergranulation throughout the Sun’s near-surface shear layer. Astrophys. J. 824, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greer, B.J., Hindman, B.W., Toomre, J.: 2016b, Helioseismic measurements of the Rossby number in the Sun’s near-surface shear layer. Astrophys. J. 824, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Greer, B.J., Hindman, B.W., Featherstone, N.A., Toomre, J.: 2015, Helioseismic imaging of fast convective flows throughout the near-surface shear layer. Astrophys. J. Lett. 803, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Thompson, M.J., Hill, F.: 2000, Solar shear flows deduced from helioseismic dense-pack samplings of ring diagrams. Solar Phys. 192, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hazra, G., Karak, B.B., Choudhuri, A.R.: 2014, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hill, F.: 1988, Rings and trumpets—Three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.F.: 1996, Solar active regions as diagnostics of subsurface conditions. Annu. Rev. Astron. Astrophys. 34, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R.: 2009, Solar interior rotation and its variation. Living Rev. Solar Phys. 6, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Komm, R., Hill, F., Ulrich, R., Haber, D.A., Hindman, B.W., Schou, J., Thompson, M.J.: 2006, Large-scale zonal flows near the solar surface. Solar Phys. 235, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., Thompson, M.J.: 2009, A note on the torsional oscillation at solar minimum. Astrophys. J. Lett. 701, L87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Hill, F., Komm, R., Christensen-Dalsgaard, J., Larson, T.P., Schou, J., Thompson, M.J., Ulrich, R.: 2011, The torsional oscillation and the new solar cycle. J. Phys. Conf. Ser. 271, 012074. DOI. ADS.

    Article  Google Scholar 

  • Jha, B.K., Choudhuri, A.R.: 2021, A theoretical model of the near-surface shear layer of the Sun. Mon. Not. Roy. Astron. Soc. 506, 2189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2017, Solar-cycle variation of subsurface-flow divergence: A proxy of magnetic activity? Solar Phys. 292, 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2018, Subsurface zonal and meridional flow during cycles 23 and 24. Solar Phys. 293, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2020, Solar-cycle variation of the subsurface flows of active- and quiet-region subsets. Solar Phys. 295, 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., Howe, R., Hill, F.: 2021, Divergence and vorticity of subsurface flows during solar cycles 23 and 24. Solar Phys. 296, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015a, Solar-cycle variation of subsurface meridional flow derived with ring-diagram analysis. Solar Phys. 290, 3113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Komm, R., González Hernández, I., Howe, R., Hill, F.: 2015b, Subsurface zonal and meridional flow derived from GONG and SDO/HMI: A comparison of systematics. Solar Phys. 290, 1081. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Pipin, V.V.: 2019, Dynamo wave patterns inside of the Sun revealed by torsional oscillations. Astrophys. J. Lett. 871, L20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Schou, J., Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Aloise, J., Bacon, L., Burnette, A., de Forest, C., Giles, P.M., Leibrand, K., Nigam, R., Rubin, M., Scott, K., Williams, S.D., Basu, S., Christensen-Dalsgaard, J., Dappen, W., Rhodes, J.E.J., Duvall, J.T.L., Howe, R., Thompson, M.J., Gough, D.O., Sekii, T., Toomre, J., Tarbell, T.D., Title, A.M., Mathur, D., Morrison, M., Saba, J.L.R., Wolfson, C.J., Zayer, I., Milford, P.N.: 1997, Structure and rotation of the solar interior: Initial results from the MDI medium-L program. Solar Phys. 170, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Matilsky, L.I., Hindman, B.W., Toomre, J.: 2019, The role of downflows in establishing solar near-surface shear. Astrophys. J. 871, 217. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miesch, M.S., Hindman, B.W.: 2011, Gyroscopic pumping in the solar near-surface shear layer. Astrophys. J. 743, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rempel, M.: 2005, Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622, 1320. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rhodes, E.J. Jr., Cacciani, A., Korzennik, S., Tomczyk, S., Ulrich, R.K., Woodard, M.F.: 1990, Depth and latitude dependence of the solar internal angular velocity. Astrophys. J. 351, 687. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Antia, H.M., Basu, S., Bogart, R.S., Bush, R.I., Chitre, S.M., Christensen-Dalsgaard, J., Di Mauro, M.P., Dziembowski, W.A., Eff-Darwich, A., Gough, D.O., Haber, D.A., Hoeksema, J.T., Howe, R., Korzennik, S.G., Kosovichev, A.G., Larsen, R.M., Pijpers, F.P., Scherrer, P.H., Sekii, T., Tarbell, T.D., Title, A.M., Thompson, M.J., Toomre, J.: 1998, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J. 505, 390. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS.

    Article  ADS  Google Scholar 

  • Snodgrass, H.B.: 1984, Separation of large-scale photospheric Doppler patterns. Solar Phys. 94, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, M.J., Toomre, J., Anderson, E.R., Antia, H.M., Berthomieu, G., Burtonclay, D., Chitre, S.M., Christensen-Dalsgaard, J., Corbard, T., De Rosa, M., Genovese, C.R., Gough, D.O., Haber, D.A., Harvey, J.W., Hill, F., Howe, R., Korzennik, S.G., Kosovichev, A.G., Leibacher, J.W., Pijpers, F.P., Provost, J., Rhodes, E.J. Jr., Schou, J., Sekii, T., Stark, P.B., Wilson, P.R.: 1996, Differential rotation and dynamics of the solar interior. Science 272, 1300. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The data used here are courtesy of NASA/SDO and the HMI Science Team. This work also utilizes GONG data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. We thank the reviewer for useful comments and suggestions. This work was supported by NASA grants 80NSSC18K1206, 80NSSC19K0261, and 80NSSC20K0194 to the National Solar Observatory and by NASA grant NNH18ZDA001N-DRIVE to Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Komm.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Celebrating a Solar Cycle of Discovery with SDO

Guest Editors: Dean Pesnell, Ryan Milligan and Shin Toriumi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komm, R. Subsurface Horizontal Flows During Solar Cycles 24 and 25 with Large-Tile Ring-Diagram Analysis. Sol Phys 296, 174 (2021). https://doi.org/10.1007/s11207-021-01923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01923-0

Keywords

Navigation