Skip to main content
Log in

Magnetospheric Science Objectives of the Juno Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Adriani et al., Space Sci. Rev. (2014, this issue)

  • I.I. Alexeev, E.S. Belenkaya, Modeling of the Jovian magnetosphere. Ann. Geophys. 23, 809–826 (2005)

    Article  ADS  Google Scholar 

  • Anderson et al., Space Sci. Rev. (2014, this issue)

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007)

    Article  ADS  Google Scholar 

  • F. Bagenal, Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci. 20, 289–328 (1992)

    Article  ADS  Google Scholar 

  • F. Bagenal, The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol.-Terr. Phys. 69, 387–402 (2007)

    Article  ADS  Google Scholar 

  • F. Bagenal, Comparative planetary environments, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, 5209 (2011)

    Article  Google Scholar 

  • F. Bagenal, T.E. Dowling, W.B. McKinnon (eds.), Jupiter: Planet, Satellites, Magnetosphere (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • A. Bahnsen, M. Jespersen, E. Ungstrup, B.M. Pedersen, L. Eliasson, Viking observations at the source region of auroral kilometric radiation. J. Geophys. Res. 94, 6643–6654 (1989)

    Article  ADS  Google Scholar 

  • S.J. Bame, B.L. Barraclough, W.C. Feldman, G.R. Gisler, J.T. Gosling, D.J. McComas, J.L. Phillips, M.F. Thomsen, B.E. Goldstein, M. Neugebauer, Jupiter’s magnetosphere: plasma description from the Ulysses flyby. Science 257, 1539–1543 (1992)

    Article  ADS  Google Scholar 

  • D.D. Barbosa, F.L. Scarf, W.S. Kurth, D.A. Gurnett, Broadband electrostatic noise and field-aligned currents in Jupiter’s middle magnetosphere. J. Geophys. Res. 86, 8357–8369 (1981)

    Article  ADS  Google Scholar 

  • J.W. Belcher, The low-energy plasma in the Jovian magnetosphere, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983)

    Google Scholar 

  • E.S. Belenkaya, The Jovian magnetospheric magnetic and electric fields: effects of the interplanetary magnetic field. Planet. Space Sci. 52, 499–511 (2004)

    Article  ADS  Google Scholar 

  • E.S. Belenkaya, S.Y. Bobrovnikov, I.I. Alexeev, V.V. Kalegaev, S.W.H. Cowley, A model of Jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 53, 863–872 (2005)

    Article  ADS  Google Scholar 

  • E.S. Belenkaya, P.A. Bespalov, S.S. Davydenko, V.V. Kalegaev, Magnetic field influence on aurorae and the Jovian plasma disk radial structure. Ann. Geophys. 24, 973–988 (2006)

    Article  ADS  Google Scholar 

  • E.K. Bigg, Influence of the satellite Io on Jupiter’s decametric emission. Nature 203, 1008–1010 (1964)

    Article  ADS  Google Scholar 

  • S. Bolton, R. Thorne, S. Bourdarie, I. DePater, B. Mauk, Jupiter’s inner radiation belts, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • Bolton et al., Space Sci. Rev. (2014, this issue)

  • B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, S. Jacobsen, UV Io footprint leading spot: a key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett. 35, 5107 (2008)

    Article  ADS  Google Scholar 

  • B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, V. Dols, P.A. Delamere, J.T. Clarke, The Io UV footprint: location, inter-spot distances and tail vertical extent. J. Geophys. Res. 114, 7224 (2009)

    Article  Google Scholar 

  • B.D. Bonfond, M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, V. Coumans, Quasiperiodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett. 380, L02104 (2011)

    ADS  Google Scholar 

  • B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39, 1105 (2012)

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite, T.E. Cravens, Latest results on Jovian disk X-rays from XMM-Newton. Planet. Space Sci. 55, 1126–1134 (2007a)

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite Jr., T.E. Cravens, A study of Jupiter’s aurorae with XMM-Newton. Astron. Astrophys. 463, 761–774 (2007b)

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, R.F. Elsner, M. Galand, D. Grodent, T.E. Cravens, P. Ford, G.R. Gladstone, J.H. Waite, Spectral morphology of the X-ray emission from Jupiter’s aurorae. J. Geophys. Res. 109, 2202 (2008)

    Google Scholar 

  • G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, P. Rodriguez, X-rays from Saturn: a study with XMM-Newton and Chandra over the years 2002-05. Astron. Astrophys. 510, A74 (2010)

    Article  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, T.K. Yeoman, Jovian cusp processes: implications for the polar aurora. J. Geophys. Res. 109, A09513 (2004)

    Article  Google Scholar 

  • B.F. Burke, K.L. Franklin, Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955)

    Article  ADS  Google Scholar 

  • C.W. Carlson, R.F. Pfaff, J.G. Watzin, The Fast Auroral SnapshoT (FAST) mission. Geophys. Res. Lett. 25, 2013–2016 (1998)

    Article  ADS  Google Scholar 

  • C.W. Carlson, J.P. McFadden, P. Turin, D.W. Curtis, A. Magoncelli, The electron and ion plasma experiment for Fast. Space Sci. Rev. 98, 33–66 (2001)

    Article  ADS  Google Scholar 

  • T. Carr, M. Desch, J. Alexander, Phenomenology of magnetospheric radio emissions, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  • G. Caudal, A self-consistent model of Jupiter’s magnetodisc including the effects of centrifugal force and pressure. J. Geophys. Res. 91, 4201–4221 (1986)

    Article  ADS  Google Scholar 

  • G. Caudal, J.E.P. Connerney, Plasma pressure in the environment of Jupiter, inferred from Voyager 1 magnetometer observations. J. Geophys. Res. 94, 15,055–15,061 (1989)

    Article  ADS  Google Scholar 

  • E. Chané, J. Saur, S. Poedts, Modeling Jupiter’s magnetosphere: influence of the internal sources. J. Geophys. Res. 118, 2157–2172 (2013)

    Article  Google Scholar 

  • S. Chapman, V.C.A. Ferraro, A new theory of magnetic storms. Nature 126, 129–130 (1930)

    Article  ADS  MATH  Google Scholar 

  • J. Clarke, D. Grodent, S. Cowley, E. Bunce, P. Zarka, J. Connerney, T. Satoh, Jupiter’s aurora, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • J.T. Clarke, J. Nichols, J.-C. Gérard, D. Grodent, K.C. Hansen, W. Kurth, G.R. Gladstone, J. Duval, S. Wannawichian, E. Bunce, S.W.H. Cowley, F. Crary, M. Dougherty, L. Lamy, D. Mitchell, W. Pryor, K. Retherford, T. Stallard, B. Zieger, P. Zarka, B. Cecconi, Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114, 5210 (2009)

    Article  Google Scholar 

  • J.E.P. Connerney, The magnetic field of Jupiter: a generalized inverse approach. J. Geophys. Res. 86, 7679–7693 (1981)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, Doing more with Jupiter’s magnetic field, in Planetary Radio Emissions III, ed. by H.O. Rucker, S.J. Bauer, M.L. Kaiser (1992)

    Google Scholar 

  • J.E.P. Connerney, Planetary magnetism, in Planets and Satellites, ed. by G. Schubert, T. Spohn. Treatise in Geophysics, vol. 10 (Elsevier, Oxford, 2007)

    Google Scholar 

  • J.E.P. Connerney, R. Baron, T. Satoh, T. Owen, Images of excited H3+ at the foot of the Io flux tube in Jupiter’s atmosphere. Science 262, 1035–1038 (1993)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuna, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929–11940 (1998)

    Article  ADS  Google Scholar 

  • Connerney et al., Space Sci. Rev. (2014, this issue)

  • S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691–1707 (2003)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, I.I. Alexeev, E.S. Belenkaya, E.J. Bunce, C.E. Cottis, V.V. Kalegaev, J.D. Nichols, R. Prange, F.J. Wilson, A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. 110, 11209 (2005)

    Article  Google Scholar 

  • S.W.H. Cowley, J.D. Nichols, D.J. Andrews, Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model. Ann. Geophys. 25, 1433–1463 (2007)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, 10101 (2008a)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, A.J. Deason, E.J. Bunce, Axi-symmetric models of auroral current systems in Jupiter’s magnetosphere with predictions for the Juno mission. Ann. Geophys. 26, 4051–4074 (2008b)

    Article  ADS  Google Scholar 

  • T.E. Cravens, N. Ozak, Auroral ion precipitation and acceleration at the outer planets, in Auroral Phenomenology and Magnetospheric Processes, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson. AGU Monograph Series (AGU, Washington, 2012)

    Google Scholar 

  • T.E. Cravens, J.H. Waite, T.I. Gombosi, N. Lugaz, G.R. Gladstone, B.H. Mauk, R.J. MacDowall, Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. J. Geophys. Res. 108, 1465 (2003)

    Article  Google Scholar 

  • P.A. Delamere, F. Bagenal, Modeling variability of plasma conditions in the Io torus. J. Geophys. Res. 108, 1276 (2003)

    Article  Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010)

    Google Scholar 

  • P.A. Delamere, F. Bagenal, Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. 118, 1–9 (2013)

    Google Scholar 

  • P.A. Delamere, A. Steffl, F. Bagenal, Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. J. Geophys. Res. 109, 10216 (2004)

    Article  Google Scholar 

  • P.A. Delamere, R.J. Wilson, A. Masters, Kelvin-Helmholtz instability at Saturn’s magnetopause: hybrid simulations. J. Geophys. Res. 116, 10222 (2011)

    Article  Google Scholar 

  • P.A. Delamere, R.J. Wilson, S. Eriksson, F. Bagenal, Magnetic signatures of Kelvin-Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. 118, 393–404 (2013)

    Article  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. 117, 7202 (2012)

    Article  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118 (2013)

  • A. Dessler (ed.), Physics of the Jovian Magnetosphere (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  • A. Dessler, V.M. Vasyliūnas, The magnetic anomaly model of the Jovian magnetosphere: predictions for Voyager. Geophys. Res. Lett. 6, 37–40 (1979)

    Article  ADS  Google Scholar 

  • M.K. Dougherty, L.W. Esposito, S.M. Krimigis (eds.), Saturn from Cassini-Huygens (Springer, Berlin, 2009)

    Google Scholar 

  • F.D. Drake, S. Hvatum, Non-thermal microwave radiation from Jupiter. Astrophys. J. 64, 329–330 (1959)

    Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961)

    Article  ADS  Google Scholar 

  • R.W. Ebert, D.J. McComas, F. Bagenal, H.A. Elliott, Location, structure, and motion of Jupiter’s dusk magnetospheric boundary from 1625 to 2550 R J. J. Geophys. Res. 115, 12223 (2010)

    Article  Google Scholar 

  • E. Echer, P. Zarka, W.D. Gonzalez, A. Morioka, L. Denis, Solar wind effects on Jupiter non-Io DAM emissions during Ulysses distant encounter (2003–2004). Astron. Astrophys. 519, A84 (2010)

    Article  ADS  Google Scholar 

  • R.F. Elsner, N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, P. Ford, D. Grodent, A. Bhardwaj, R.J. MacDowall, M.D. Desch, T. Majeed, Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. 110, 1207 (2005a)

    Article  Google Scholar 

  • R.F. Elsner, B.D. Ramsey, J.H. Waite, P. Rehak, R.E. Johnson, J.F. Cooper, D.A. Swartz, X-ray probes of magnetospheric interactions with Jupiter’s auroral zones, the Galilean satellites, and the Io plasma torus. Icarus 178, 417–428 (2005b)

    Article  ADS  Google Scholar 

  • R.E. Ergun, L. Ray, P.A. Delamere, F. Bagenal, V. Dols, Y.-J. Su, Generation of parallel electric fields in the Jupiter-Io torus wake region. J. Geophys. Res. 114, 5201 (2009)

    Article  Google Scholar 

  • G.B. Field, The source of radiation from Jupiter at decimeter wavelengths. J. Geophys. Res. 64, 1169–1177 (1959)

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett. 32, 3202 (2005)

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, 10207 (2006)

    Article  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, 9219 (2010)

    Article  Google Scholar 

  • P.H.M. Galopeau, P. Zarka, D. Le Queau, Source location of Saturn’s kilometric radiation: the Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100, 26397–26410 (1995)

    Article  ADS  Google Scholar 

  • H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, A revised model of Jupiter’s inner electron belts: updating the Divine radiation model. Geophys. Res. Lett. 32, 4104 (2005)

    Article  ADS  Google Scholar 

  • Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58, 1455–1469 (2010)

    Article  ADS  Google Scholar 

  • G.R. Gladstone, J.H. Waite, D. Grodent, W.S. Lewis, F.J. Crary, R.F. Elsner, M.C. Weisskopf, T. Majeed, J.-M. Jahn, A. Bhardwaj, J.T. Clarkek, D.T. Young, M.K. Dougherty, S.A. Espinosa, T.E. Cravens, A pulsating auroral X-ray hot spot on Jupiter. Science 415, 1000–1003 (2002)

    Google Scholar 

  • G.R. Gladstone, S.A. Stern, S. Alan, D.C.S. Slater, M. Versteeg, M.W. Davis, K.D. Retherford, L.A. Young, A.J. Steffl, H. Throop, J.W. Parker, H.A. Weaver, A.F. Cheng, G.S. Orton, J.T. Clarke, J.D. Nichols, Jupiter’s nightside airglow and aurora. Science 318, 229 (2007)

    Article  ADS  Google Scholar 

  • Gladstone et al., Space Sci. Rev. (2014, this issue)

  • C.K. Goertz, Detached plasma in Saturn’s front side magnetosphere. Geophys. Res. Lett. 10, 455–458 (1983)

    Article  ADS  Google Scholar 

  • C.K. Goertz, B.A. Randall, M.F. Thomsen, D.E. Jones, E.J. Smith, Evidence for open field lines in Jupiter’s magnetosphere. J. Geophys. Res. 81, 3393–3397 (1976)

    Article  ADS  Google Scholar 

  • T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009)

    Google Scholar 

  • A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114, 7219 (2009)

    Article  Google Scholar 

  • D. Grodent, J.T. Clarke, J. Kim, J.H. Waite Jr., S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003a)

    Article  Google Scholar 

  • D. Grodent, J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gerard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003b)

    Article  Google Scholar 

  • D. Grodent, J.-C. Gerard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, 5201 (2004)

    Article  Google Scholar 

  • D. Grodent, B. Bonfond, J.-C. Gerard, A. Radioti, J. Gustin, J.T. Clarke, J. Nichols, J.E.P. Connerney, Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, 9201 (2008)

    Google Scholar 

  • J. Gustin, S.W.H. Cowley, J.-C. Gérard, G.R. Gladstone, D. Grodent, J.T. Clarke, Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/Space Telescope Imaging Spectrograph imaging and spectral observations. J. Geophys. Res. 111, A09220 (2006)

    Article  ADS  Google Scholar 

  • J. Gustin, J.-C. Gerard, D. Grodent, G. Gladstone, J. Clarke, W. Pryor, V. Dols, B. Bonfond, A. Radioti, L. Lamy, J. Ajello, Effects of methane on giant planets UV emissions and implications for the auroral characteristics. J. Mol. Spectrosc. (2013)

  • Hansen et al., Space Sci. Rev. (2014, this issue)

  • S. Hess, P. Zarka, F. Mottez, Io–Jupiter interaction, millisecond bursts and field-aligned potentials. Planet. Space Sci. 55, 89–99 (2007a)

    Article  ADS  Google Scholar 

  • S. Hess, F. Mottez, P. Zarka, Jovian S burst generation by Alfvén waves. J. Geophys. Res. 112, A11212 (2007b)

    Article  ADS  Google Scholar 

  • S. Hess, F. Mottez, P. Zarka, T. Chust, Generation of the Jovian radio decametric arcs from the Io flux tube. J. Geophys. Res. 113, A03209 (2008a)

    Article  ADS  Google Scholar 

  • S. Hess, B. Cecconi, P. Zarka, Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett. 35, L13107 (2008b)

    Article  ADS  Google Scholar 

  • S. Hess, F. Mottez, P. Zarka, Effect of electric potential structures on Jovian S-burst morphology. Geophys. Res. Lett. 36, L14101 (2009)

    Article  ADS  Google Scholar 

  • S.L.G. Hess, P. Delamere, V. Dols, B. Bonfond, D. Swift, Power transmission and particle acceleration along the Io flux tube. J. Geophys. Res. 115, 6205 (2010a)

    Google Scholar 

  • S.L.G. Hess, A. Petin, P. Zarka, B. Bonfond, B. Cecconi, Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci. 58, 1188–1198 (2010b)

    Article  ADS  Google Scholar 

  • S.L.G. Hess, B. Bonfond, P. Zarka, D. Grodent, Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. 116, 5217 (2011)

    Article  Google Scholar 

  • S.L.G. Hess, E. Echer, P. Zarka, Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planet. Space Sci. 70, 114–125 (2012)

    Article  ADS  Google Scholar 

  • C.A. Higgins, T.D. Carr, F. Reyes, A new determination of Jupiter’s radio rotation period. Geophys. Res. Lett. 23, 2653–2656 (1996)

    Article  ADS  Google Scholar 

  • C.A. Higgins, T.D. Carr, F. Reyes, W.B. Greenman, G.R. Lebo, A redefinition of Jupiter’s rotation period. J. Geophys. Res. 102, 22033–22042 (1997)

    Article  ADS  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979)

    Article  ADS  Google Scholar 

  • T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8108 (2001)

    Article  ADS  Google Scholar 

  • T.W. Hill, D.H. Pontius, Plasma injection near Io. J. Geophys. Res. 103, 19879 (1998)

    Article  ADS  Google Scholar 

  • T.W. Hill, V.M. Vasyliūnas, Jovian auroral signature of Io’s corotational wake. J. Geophys. Res. 107, 1464 (2002)

    Article  Google Scholar 

  • T.W. Hill, A.J. Dessler, C.K. Goertz, Magnetospheric models, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, Cambridge, 1983), pp. 353–394

    Chapter  Google Scholar 

  • G.B. Hospodarsky, W.S. Kurth, B. Cecconi, D.A. Gurnett, M.L. Kaiser, M.D. Desch, P. Zarka, Simultaneous observations of Jovian quasi-periodic radio emissions by the Galileo and Cassini spacecraft. J. Geophys. Res. 109, A09S07 (2004)

    Article  ADS  Google Scholar 

  • T.S. Huang, T.W. Hill, Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 94, 3761–3765 (1989)

    Article  ADS  Google Scholar 

  • D.E. Huddleston, C.T. Russell, M.G. Kivelson, K.K. Khurana, L. Bennett, Location and shape of the Jovian magnetopause and bow shock. J. Geophys. Res. 103, 20075–20082 (1998)

    Article  ADS  Google Scholar 

  • Y. Hui, D.R. Schultz, V.A. Kharchenko, A. Bhardwaj, G. Branduardi-Raymont, P.C. Stancil, T.E. Cravens, C.M. Lisse, A. Dalgarno, Comparative analysis and variability of the Jovian X-ray spectra detected by the Chandra and XMM-Newton observatories. J. Geophys. Res. 115, 7102 (2010)

    Article  Google Scholar 

  • C.M. Jackman, N. Achilleos, E.J. Bunce, S.W.H. Cowley, M.K. Dougherty, G.H. Jones, S.E. Milan, Interplanetary magnetic field conditions at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics. J. Geophys. Res. 109 (2004)

  • Janssen et al., Space Sci. Rev. (2014, this issue)

  • X. Jia, M.G. Kivelson, K.K. Khurana, R. Walker, Magnetic fields of the satellites of Jupiter and Saturn. Space Sci. Rev. 152, 271–305 (2009)

    Article  ADS  Google Scholar 

  • S.T. Jones, Y.-J. Su, Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. J. Geophys. Res. 113, A12205 (2008)

    Article  ADS  Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, 1309 (2002)

    Article  Google Scholar 

  • S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res. 115, 6207 (2010)

    Article  Google Scholar 

  • S. Kasahara, E.A. Kronberg, T. Kimura, C. Tao, S.V. Badman, A. Masters, A. Retino, N. Krupp, M. Fujimoto, Asymmetric distribution of reconnection jet fronts in the Jovian nightside magnetosphere. J. Geophys. Res. 118, 375–384 (2013)

    Article  Google Scholar 

  • A. Keiling, E. Donovan, F. Bagenal, T. Karlsson (eds.), Auroral Phenomenology and Magnetospheric Processes (AGU, Washington, 2012)

    Google Scholar 

  • K.K. Khurana, Euler potential models of Jupiter’s magnetospheric field. J. Geophys. Res. 102, 11295–11306 (1997)

    Article  ADS  Google Scholar 

  • K.K. Khurana, Influence of solar wind on Jupiter’s magnetosphere deduced from currents in the equatorial plane. J. Geophys. Res. 106, 25999–26016 (2001)

    Article  ADS  Google Scholar 

  • K.K. Khurana, M.G. Kivelson, On Jovian plasma sheet structure. J. Geophys. Res. 94, 11791–11803 (1989)

    Article  ADS  Google Scholar 

  • K.K. Khurana, H.K. Schwarzl, Global structure of Jupiter’s magnetospheric current sheet. J. Geophys. Res. 110, 7227 (2005)

    Article  Google Scholar 

  • K. Khurana, M.G. Kivelson, V. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B. Mauk, W. Kurth, The configuration of Jupiter’s magnetosphere, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • T. Kimura, F. Tsuchiya, H. Misawa, A. Morioka, H. Nozawa, Occurrence statistics and ray tracing study of Jovian quasiperiodic radio bursts observed from low latitudes. J. Geophys. Res. 115, A05217 (2010)

    ADS  Google Scholar 

  • M.G. Kivelson, Planetary magnetospheres, in Handbook of the Solar-Terrestrial Environment, ed. by Y. Kamide, A.C.-L. Chian (2007)

    Google Scholar 

  • M. Kivelson, F. Bagenal, Planetary magnetospheres, in Encyclopedia of the Solar System, ed. by McFadden, Weissman, Johnson (2007)

    Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, 12209 (2005)

    Article  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, R.J. Walker, Sheared magnetic field structure in Jupiter’s dusk magnetosphere: implications for return currents. J. Geophys. Res. 107, 1116 (2002)

    Article  Google Scholar 

  • M.G. Kivelson, F. Bagenal, W.S. Kurth, F.M. Neubauer, C. Paranicas, J. Saur, Magnetospheric interactions with satellites, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973)

    Article  ADS  Google Scholar 

  • S.M. Krimigis, C.O. Bostrom, E.P. Keath, R.D. Zwickl, J.F. Carbary, T.P. Armstrong, W.I. Axford, C.Y. Fan, G. Gloeckler, L.J. Lanzerotti, Hot plasma environment at Jupiter—Voyager 2 results. Science 206, 977–984 (1979)

    Article  ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res. 110, 3211 (2005)

    Article  Google Scholar 

  • E.A. Kronberg, K.-H. Glassmeier, J. Woch, N. Krupp, A. Lagg, M.K. Dougherty, A possible intrinsic mechanism for the quasi-periodic dynamics of the Jovian magnetosphere. J. Geophys. Res. 112, 5203 (2007)

    Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, P.W. Daly, A. Korth, Comparison of periodic substorms at Jupiter and Earth. J. Geophys. Res. 113, 4212 (2008)

    Article  Google Scholar 

  • N. Krupp, V. Vasyliunas, J. Woch, A. Lagg, K. Khurana, M. Kivelson, B. Mauk, E. Roelof, D. Williams, S. Krimigis, W. Kurth, L. Frank, W. Paterson, Dynamics of the Jovian magnetosphere, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • W.S. Kurth, Comparative observations of plasma waves at the outer planets. Adv. Space Res. 12, 83–90 (1992)

    Article  ADS  Google Scholar 

  • W.S. Kurth, D.A. Gurnett, Plasma waves in planetary magnetospheres. J. Geophys. Res. 96, 18977 (1991)

    Article  ADS  Google Scholar 

  • W.S. Kurth, E.J. Bunce, J.T. Clarke, F.J. Crary, D.C. Grodent, A.P. Ingersoll, U.A. Dyudina, L. Lamy, D.G. Mitchell, A.M. Persoon, W.R. Pryor, J. Saur, T. Stallard, Auroral processes, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009)

    Google Scholar 

  • Kurth et al., Space Sci. Rev. (2014, this issue)

  • H.P. Ladreiter, P. Zarka, A. Lacacheux, Direction finding study of Jovian hectometric and broadband kilometric radio emissions: evidence for their auroral origin. Planet. Space Sci. 42, 919–931 (1994)

    Article  ADS  Google Scholar 

  • L. Lamy, P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, M.K. Dougherty, P. Louarn, N. André, W.S. Kurth, R.L. Mutel, D.A. Gurnett, A.J. Coates, Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 39, L12104 (2010)

    ADS  Google Scholar 

  • G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, The atmosphere of Jupiter—an analysis of the Voyager radio occultation measurements. J. Geophys. Res. 86, 8721–8727 (1981)

    Article  ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the large scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett. 25, 2905–2908 (1998)

    Article  ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W.S. Kurth, D.A. Gurnett, A study of the Jovian “energetic magnetospheric events” observed by Galileo: role in the radial plasma transport. J. Geophys. Res. 105, 13073–13088 (2000)

    Article  ADS  Google Scholar 

  • P. Louarn, B. Mauk, D.J. Williams, C. Zimmer, M.G. Kivelson, W.S. Kurth, D.A. Gurnett, A. Roux, A multi-instrument study of a Jovian magnetospheric disturbance. J. Geophys. Res. 106, 29883 (2001)

    Article  ADS  Google Scholar 

  • A. Masters, N. Achilleos, C. Bertucci, M.K. Dougherty, S.J. Kanani, C.S. Arridge, H.J. McAndrews, A.J. Coates, Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin-Helmholtz instability. Planet. Space Sci. 57, 1769–1778 (2009)

    Article  ADS  Google Scholar 

  • A. Masters, N. Achilleos, M.G. Kivelson, N. Sergis, M.K. Dougherty, M.F. Thomsen, C.S. Arridge, S.M. Krimigis, H.J. McAndrews, S.J. Kanani, N. Krupp, A.J. Coates, Cassini observations of a Kelvin-Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res. 115, 7225 (2010)

    Article  Google Scholar 

  • A. Masters, D.G. Mitchell, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res. 116, 6210 (2011a)

    Article  Google Scholar 

  • A. Masters, A.P. Walsh, A.N. Fazakerley, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 2. Electron structure. J. Geophys. Res. 116, 6211 (2011b)

    Google Scholar 

  • A. Masters, J.P. Eastwood, M. Swisdak, M.F. Thomsen, C.T. Russell, N. Sergis, F.J. Crary, M.K. Dougherty, A.J. Coates, S.M. Krimigis, The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, 8103 (2012)

    Article  ADS  Google Scholar 

  • B. Mauk, F. Bagenal, Auroral phenomenology and magnetospheric processes: Earth and other planets, in Auroral Phenomenology and Magnetospheric Processes, ed. by Keiling, Donovan, Bagenal, Karlsson. AGU Monograph Series (AGU, Washington, 2012)

    Google Scholar 

  • B.H. Mauk, J. Saur, Equatorial electron beams and auroral structuring at Jupiter. J. Geophys. Res. 112, 10221 (2007)

    Article  Google Scholar 

  • B.H. Mauk, D.G. Mitchell, R.W. McEntire, C.P. Paranicas, E.C. Roelof, D.J. Williams, S.M. Krimigis, A. Lagg, Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. J. Geophys. Res. 109, 9 (2004)

    Article  Google Scholar 

  • B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler, R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009)

    Google Scholar 

  • Mauk et al., Space Sci. Rev. (2014, this issue)

  • D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, 20106 (2007)

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 217 (2007)

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Reply to comment by S.W.H. Cowley et al. on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind”. Geophys. Res. Lett. 35, 10103 (2008)

    Article  ADS  Google Scholar 

  • D.J. McComas, N. Angold, H.A. Elliott, G. Livadiotis, N.A. Schwadron, R.M. Skoug, C.W. Smith, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2 (2013)

    Article  ADS  Google Scholar 

  • D.J. McComas, N. Alexander, F. Allegrini, F. Bagenal, C. Beebe, G. Clark, F. Crary, M.I. Desai, A. De Los Santos, D. Demkee, J. Dickinson, D. Everett, T. Finley, A. Gribanova, R. Hill, J. Johnson, C. Kofoed, C. Loeffler, P. Louarn, M. Maple, W. Mills, C. Pollock, M. Reno, B. Rodriguez, J. Rouzaud, D. Santos-Costa, P. Valek, S. Weidner, P. Wilson, R.J. Wilson, D. White, The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter. Space Sci. Rev. (2014a, this issue). doi:10.1007/s11214-013-9990-9

  • D.J. McComas, F. Bagenal, R.W. Ebert, Bimodal size of Jupiter’s magnetosphere. J. Geophys. Res. (2014b, in review)

  • J.P. McFadden, C.W. Carlson, R.E. Ergun, Microstructure of the auroral acceleration region as observed by FAST. J. Geophys. Res. 104, 14453–14480 (1999)

    Article  ADS  Google Scholar 

  • R.L. McNutt Jr., J.W. Belcher, J.D. Sullivan, F. Bagenal, H.S. Bridge, Departure from rigid co-rotation of plasma in Jupiter’s dayside magnetosphere. Nature 280, 803 (1979)

    Article  ADS  Google Scholar 

  • R.L. McNutt, D.K. Haggerty, M.E. Hill, S.M. Krimigis, S. Livi, G.C. Ho, R.S. Gurnee, B.H. Mauk, D.G. Mitchell, E.C. Roelof, D.J. McComas, F. Bagenal, H.A. Elliott, L.E. Brown, M. Kusterer, J. Vandegriff, S.A. Stern, H.A. Weaver, J.R. Spencer, J.M. Moore, Energetic particles in the Jovian magnetotail. Science 318, 220 (2007)

    Article  ADS  Google Scholar 

  • D.G. Mitchell, J.F. Carbary, S.W.H. Cowley, T.W. Hill, P. Zarka, The dynamics of Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009)

    Google Scholar 

  • F. Mottez, S.L.G. Hess, P. Zarka, Explanation of dominant oblique radio emission at Jupiter and comparison to the Terrestrial case. Planet. Space Sci. 58, 1414–1422 (2010)

    Article  ADS  Google Scholar 

  • R.L. Mutel, J.D. Menietti, D.A. Gurnett, W. Kurth, P. Schippers, C. Lynch, L. Lamy, C. Arridge, B. Cecconi, CMI growth rates for saturnian kilometric radiation. Geophys. Res. Lett. 37, L19105 (2010)

    Article  ADS  Google Scholar 

  • J.D. Nichols, Magnetosphere-ionosphere coupling in Jupiter’s middle magnetosphere: computations including a self-consistent current sheet magnetic field model. J. Geophys. Res. 116, 10232 (2011)

    Article  Google Scholar 

  • J. Nichols, S. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1799–1827 (2004)

    Article  ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of magnetosphere-ionosphere decoupling due to field-aligned auroral voltages. Ann. Geophys. 23, 799–808 (2005)

    Article  ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5 AU. Ann. Geophys. 24, 393–406 (2006)

    Article  ADS  Google Scholar 

  • J.D. Nichols, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gerard, D. Grodent, W.R. Pryor, Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. 112, A02203 (2007)

    ADS  Google Scholar 

  • J.D. Nichols, J.T. Clarke, J.C. Gerard, D. Grodent, Observations of Jovian polar auroral filaments. Geophys. Res. Lett. 36, 8101 (2009a)

    Article  ADS  Google Scholar 

  • J.D. Nichols, J.T. Clarke, J.C. Gerard, D. Grodent, K.C. Hansen, Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. 114, 6210 (2009b)

    Google Scholar 

  • T.G. Northrop, T.J. Birmingham, Adiabatic charged particle motion in rapidly rotating magnetospheres. J. Geophys. Res. 87, 661–669 (1982)

    Article  ADS  Google Scholar 

  • N. Ozak, D.R. Schultz, T.E. Cravens, V. Kharchenko, Y.-W. Hui, Auroral X-ray emission at Jupiter: depth effects. J. Geophys. Res. 115, 11306 (2010)

    Article  Google Scholar 

  • L. Pallier, R. Prangé, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159–1173 (2001)

    Article  ADS  Google Scholar 

  • L. Pallier, R. Prangé, Detection of the southern counterpart of the Jovian northern polar cusp: shared properties. Geophys. Res. Lett. 31, L06701 (2004)

    Article  ADS  Google Scholar 

  • G. Paschmann, S. Haaland, R. Treumann (eds.), Auroral Plasma Physics. Space Sci. Rev. 103 (2002)

  • D.H. Pontius Jr., T.W. Hill, Departure from corotation of the Io plasma torus: local plasma production. Geophys. Res. Lett. 9, 1321–1324 (1982)

    Article  ADS  Google Scholar 

  • R. Prange, P. Zarka, G.E. Ballester, T.A. Livengood, L. Denis, T.D. Carr, F. Reyes, S.J. Bame, H.W. Moos, Correlated variations of UV and radio emissions during an outstanding Jovian auroral event. J. Geophys. Res. 98, 18779–18791 (1993)

    Article  ADS  Google Scholar 

  • J. Queinnec, P. Zarka, Io-controlled decameter arcs and Io-Jupiter interaction. J. Geophys. Res. 103, 26649–26666 (1998)

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gerard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, 3104 (2008)

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gerard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. 115, 7214 (2010)

    Article  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gerard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, 3221 (2011)

    Article  Google Scholar 

  • L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. 115, 9211 (2010)

    Article  Google Scholar 

  • L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: a parameter space study. J. Geophys. Res. 117, A01205 (2012)

    Article  ADS  Google Scholar 

  • L.C. Ray, N. Achilleos, Y.N. Yates, Including field-aligned potentials in the coupling between Jupiter’s thermosphere, ionosphere, and magnetosphere. Planet. Space Sci. 62 (2014, submitted)

  • M.J. Reiner, J. Fainberg, R.G. Stone, M.L. Kaiser, M.D. Desch, R. Manning, P. Zarka, B.-M. Pedersen, Source characteristics of Jovian narrow-band kilometric radio emissions. J. Geophys. Res. 98, 13163–13176 (1993)

    Article  ADS  Google Scholar 

  • E. Roussos, N. Krupp, C.P. Paranicas, P. Kollmann, D.G. Mitchell, S.M. Krimigis, T.P. Armstrong, D.R. Went, M.K. Dougherty, G.H. Jones, and short-term variability of Saturn’s ionic radiation belts. J. Geophys. Res. 116, 2217 (2011)

    Article  Google Scholar 

  • A. Roux, A. Hilgers, H. de Feraudy, D. Le Queau, P. Louarn, S. Perraut, A. Bahnsen, M. Jespersen, E. Ungstrup, M. Andre, Auroral kilometric radiation sources—in situ and remote observations from Viking. J. Geophys. Res. 98, 11657–11670 (1993)

    Article  ADS  Google Scholar 

  • C.T. Russell, Outer planet magnetospheres: a tutorial. Adv. Space Res. 33, 2004–2020 (2004)

    Article  ADS  Google Scholar 

  • C.T. Russell, New horizons in planetary magnetospheres. Adv. Space Res. 37, 1467–1481 (2006)

    Article  ADS  Google Scholar 

  • C.T. Russell, K.K. Khurana, M.G. Kivelson, D.E. Huddleston, Substorms at Jupiter: Galileo observations of transient reconnection in the near tail. Adv. Space Res. 26, 1499–1504 (2000)

    Article  ADS  Google Scholar 

  • C.T. Russell, Z.J. Yu, M.G. Kivelson, The rotation period of Jupiter. Geophys. Res. Lett. 28, 1911–1912 (2001)

    Article  ADS  Google Scholar 

  • V.B. Ryabov, B.P. Ryabov, D.M. Vavriv, P. Zarka, R. Kozhin, V.V. Vinogradov, V.A. Shevchenko, Jupiter S-bursts: narrow-band origin of microsecond subpulses. J. Geophys. Res. 112, A09206 (2007)

    Article  ADS  Google Scholar 

  • D. Santos-Costa, S.J. Bolton, Discussing the processes constraining the Jovian synchrotron radio emission’s features. Planet. Space Sci. 56, 326–345 (2008)

    Article  ADS  Google Scholar 

  • D. Santos-Costa, S.A. Bourdarie, Modeling the inner Jovian electron radiation belt including non-equatorial particles. Planet. Space Sci. 49, 303–312 (2001)

    Article  ADS  Google Scholar 

  • D. Santos-Costa, S.J. Bolton, R.M. Thorne, Y. Miyoshi, S.M. Levin, Investigating the origins of the Jovian decimetric emission’s variability. J. Geophys. Res. 113, 1204 (2008)

    Article  Google Scholar 

  • J. Saur, A. Pouquet, W.H. Matthaeus, An acceleration mechanism for the generation of the main auroral oval on Jupiter. Geophys. Res. Lett. 30, 1260 (2003)

    Article  ADS  Google Scholar 

  • J. Saur, F.M. Neubauer, J.E.P. Connerney, P. Zarka, M.G. Kivelson, Plasma interaction of Io with its plasma torus, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • A.W. Schardt, C.K. Goertz, High-energy particles, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  • P. Schippers, C.S. Arridge, J.D. Menietti, D.A. Gurnett, L. Lamy, B. Cecconi, D.G. Mitchell, N. André, W.S. Kurth, S. Grimald, M.K. Dougherty, A.J. Coates, N. Krupp, D.T. Young, Auroral electron distributions within and close to the Saturn kilometric radiation source region. J. Geophys. Res. 116, A05203 (2011)

    Article  ADS  Google Scholar 

  • N. Sergis, S.M. Krimigis, E.C. Roelof, C.S. Arridge, A.M. Rymer, D.G. Mitchell, D.C. Hamilton, N. Krupp, M.F. Thomsen, M.K. Dougherty, A.J. Coates, D.T. Young, Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett. 37, 2102 (2010)

    Article  ADS  Google Scholar 

  • G.L. Siscoe, Towards a comparative theory of magnetospheres, in Solar System Plasma Physics, vol. 2, ed. by Parker, Kennel, Lanzerotti (North-Holland, Amsterdam, 1979)

    Google Scholar 

  • J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets: gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90, 6275–6286 (1985)

    Article  ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 23, 199–230 (2009)

    Article  ADS  Google Scholar 

  • D. Southwood, M. Kivelson, A new perspective concerning the influence of the solar wind on Jupiter. J. Geophys. Res. 106, 6123–6130 (2001)

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the Jovian ionosphere and thermosphere. I: the measurement of ion winds. Icarus 154, 475–491 (2001)

    Article  ADS  Google Scholar 

  • T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30, 1221 (2003)

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, H. Melin, Clues on Ionospheric Electrodynamics from IR Aurora at Jupiter and Saturn. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Mono. Series, vol. 197 (2012), pp. 215–224

    Book  Google Scholar 

  • A.J. Steffl, A.I.F. Stewart, F. Bagenal, Cassini UVIS observations of the Io plasma torus. I: initial results. Icarus 172, 78–90 (2004a)

    Article  ADS  Google Scholar 

  • A.J. Steffl, F. Bagenal, A.I.F. Stewart, Cassini UVIS observations of the Io plasma torus. II: radial variations. Icarus 172, 91–103 (2004b)

    Article  ADS  Google Scholar 

  • A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. III: observations of temporal and azimuthal variability. Icarus 180, 124–140 (2006)

    Article  ADS  Google Scholar 

  • A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. IV: modeling temporal and azimuthal variability. Icarus 194, 153–165 (2008)

    Article  ADS  Google Scholar 

  • Y.-J. Su, R.E. Ergun, F. Bagenal, P.A. Delamere, Io-related Jovian auroral arcs: modeling parallel electric fields. J. Geophys. Res. 108, 1094 (2003)

    Google Scholar 

  • C. Tao, H. Fujiwara, Y. Kasaba, Neutral wind control of the Jovian magnetosphere-ionosphere current system. J. Geophys. Res. 114, 8307–8323 (2009)

    Google Scholar 

  • C. Tao, S.V. Badman, M. Fujimoto, UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 213, 581–592 (2011)

    Article  ADS  Google Scholar 

  • C. Tao, S.V. Badman, T. Uno, M. Fujimoto, On the feasibility of characterizing Jovian auroral electrons via \(\mathrm{H}_{3}^{+}\) infrared line-emission analysis. Icarus 221, 236–247 (2012)

    Article  ADS  Google Scholar 

  • N. Thomas, F. Bagenal, T. Hill, J. Wilson, The Io neutral clouds and plasma torus, in Jupiter: Planet, Satellites, Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • J.H. Trainor, F.B. McDonald, D.E. Stillwell, B.J. Teegarden, W.R. Webber, Jovian protons and electrons: Pioneer 11. Science 188, 462–465 (1975)

    Article  ADS  Google Scholar 

  • J.A. Van Allen, F. Bagenal, Planetary magnetospheres and the interplanetary medium, beatty, in The New Solar System, ed. by Collins-Petersen, Chaikin (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  • A.R. Vasavada, A.H. Bouchez, A.P. Ingersoll, B. Little, C.D. Anger (Galileo SSI Team), Jupiter’s visible aurora and Io footprint. J. Geophys. Res. 104, 27133–27142 (1999)

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  • V.M. Vasyliūnas, Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys. Res. Lett. 21, 401–404 (1994)

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, Comparative magnetospheres: lessons for Earth. Adv. Space Res. 33, 2113–2120 (2004)

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, Fundamentals of planetary magnetospheres, in Heliophysics: Plasma Physics of the Local Cosmos, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • V.M. Vasyliūnas, Comparative magnetospheres: lessons for Earth. Space Sci. Rev. 158, 91–118 (2011)

    Article  ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, 6219 (2010)

    Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, 3220 (2011)

    Article  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, M. Ashour-Abdalla, E.J. Bunce, Simulating the effect of centrifugal forces in Jupiter’s magnetosphere. J. Geophys. Res. (2013)

  • J.H. Waite, G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, P. Riley, R.J. Walker, P. Robertson, S. Desai, J.T. Clarke, D.T. Young, An auroral flare at Jupiter. Nature 410, 787–789 (2001)

    Article  ADS  Google Scholar 

  • R.J. Walker, T. Ogino, A simulation study of currents in the Jovian magnetosphere. Planet. Space Sci. 51, 295–307 (2003)

    Article  ADS  Google Scholar 

  • R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90, 7397–7404 (1985)

    Article  ADS  Google Scholar 

  • R. Walker, C. Russell, Solar wind interactions with magnetized planets, in Introduction to Space Physics, ed. by R. Kivelson (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29, 1138 (2002)

    Article  ADS  Google Scholar 

  • J.N. Yates, N. Achilleos, P. Guio, Influence of upstream solar wind on thermospheric flows at Jupiter. Planet. Space Sci. 61, 15–31 (2012)

    Article  ADS  Google Scholar 

  • Z.J. Yu, C.T. Russell, Rotation period of Jupiter from the observation of its magnetic field. Geophys. Res. Lett. 36, 20202 (2009)

    Article  ADS  Google Scholar 

  • P. Zarka, Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998)

    Article  ADS  Google Scholar 

  • P. Zarka, Radio emissions from the planets and their moons, in Radio Astronomy at Long Wavelengths, ed. by Stone, Weiler, Goldstein, Bougeret (AGU, Washington, 2000)

    Google Scholar 

  • P. Zarka, Radio and plasma waves at the outer planets. Adv. Space Res. 33, 2045–2060 (2004)

    Article  ADS  Google Scholar 

  • P. Zarka, R.A. Treumann, B.P. Ryabov, V.B. Ryabov, Magnetically-driven planetary radio emissions and application to extrasolar planets. Astrophys. Space Sci. 277, 293300 (2001a)

    Article  Google Scholar 

  • P. Zarka, J. Queinnec, F.J. Crary, Low-frequency limit of Jovian radio emissions and implications on source locations and Io plasma wake. Planet. Space Sci. 49, 1137–1149 (2001b)

    Article  ADS  Google Scholar 

  • P. Zarka, B. Cecconi, W.S. Kurth, Jupiter’s low-frequency radio spectrum from Cassini/radio and plasma wave science (RPWS) absolute flux density measurements. J. Geophys. Res. 109, A09S15 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge all the outstanding contributions from the many people who made the Juno mission a reality. We thank Philippe Louarn (IRAP, Toulouse, France) for assistance and Tom Stallard (University of Leicester) for the IR image in Fig. 17. FB would like to thank Steve Bartlett for making several of the graphics, Sarah Vines (SWRI) for proofing, plus others at the University of Colorado for their help with producing materials: Laura Brower, Emma Bunnell, Dinesh Costlow, Frank Crary, Adam Shinn, Christopher Fowler, Drake Ranquist, Andrew Sturner and Rob Wilson. Further information and plots for Juno orbits can be found at http://lasp.colorado.edu/mop/resources/juno/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bagenal.

Appendix: Jovian Magnetospheric Coordinate Systems

Appendix: Jovian Magnetospheric Coordinate Systems

Below we describe the five main coordinate systems of potential use by the Juno MWG. But first we need to clarify the fiducial value of the radius of Jupiter. Dessler (1983) declared use of the value R J=71400 km in the appendix of Physics of the Jovian Magnetosphere. A full description of the planetary parameters and coordinate systems is provided in Appendix 2 of Jupiter: Planet, Satellites, Magnetosphere (Bagenal et al. 2004) where the equatorial radius at the 1-bar level is given as R J=71492±4 km (Lindal et al. 1981). The JPL navigation team that provides Juno trajectory information uses R J=71492 km, the value we propose for all Juno MWG activities throughout the mission. Note that because of the rapid rotation of the planet, the polar radius of Jupiter is much less (66854 km).

1.1 A.1 Jupiter System III (S3LH, S3RH)

This system rotates with the planet at the sidereal System III (1965) spin period of 9h 55m 29.711s =9.92492 hours (or angular velocity of 1.76×10−4 rad/s=870.536/day). This spin period was originally based on ground-based radio observations and the longitude (λ III) was defined to increase with time, as observed from Earth. The problem with this system is that it is a left-handed coordinate system (which we label S3LH). Since many prefer right-hand coordinate systems, we also define a RH system (S3RH) where the longitude (λ RH=360λ III) decreases with time as viewed from Earth. These two variations on Jovian System III are shown in Fig. 33. The location of the Prime Meridian (the meridian plane in both systems and where both longitudes are zero) is defined in terms of the Central Meridian Longitude (i.e. Earth-Jupiter vector) on a specific date in 1965. S3LH uses latitude (θ III) while S3RH uses colatitude (θ RH).

Fig. 33
figure 33

(a) Jupiter System III (1965) coordinates (S3LH). The Z-axis is defined by the spin axis of Jupiter. The X-axis is defined by 0 latitude on the System III longitude λ III=0 (prime meridian). The Y-axis completes the orthogonal left handed system. Latitude (θ III) is defined from the equator. X=0 latitude, Prime Meridian, Y=X×Z, Z = Jupiter spin axis. (b) Right-handed System III. This coordinate system has the same basis as the left-handed System III except that longitude is (λ RH) decreases with time and co-latitude (θ RH) is used. X=90 colatitude, Prime Meridian, Y=Z×X, Z = Jupiter spin axis

Note that Higgins et al. (1996, 1997) proposed, based on 35 years of radio observations of Jupiter, that the rotation rate of the planet interior maybe ∼25 ms shorter than the System III (1965) rotation rate (see also discussion in relation to magnetic field models by Russell et al. 2001; Yu and Russell 2009; Hess et al. 2011). A 25 ms shorter spin period amounts to just 0.2/yr which is negligible over the duration of the Juno mission but is significant for comparing Voyager and Juno epochs. Since this is a minimal change in the rotation rate the IAU and the Juno project have decided not to change the official System III rotation rate to limit confusion between systems and to allow easy comparison of data sets from different epochs.

Please also note that the rotation rate stated in appendix of the Bagenal et al. (2004) Jupiter book is incorrect.

1.2 A.2 Jupiter Magnetic (JMAG)

This system is the System III (RH) but is tilted by the 9.5 of the dipole approximation to the magnetic field of Jupiter, tilted towards λ III=200.8 or λ RH=159.2 (Fig. 34). This tilt is based on the VIP4 model (Connerney et al. 1998, 2014, this issue). The magnetic longitude is defined with respect to the meridian where the magnetic and geographic equators cross (where θ III=0 and θ RH=θ MAG=90) at λ III=290.8 or λ RH=69.2. Since most models tend to work in right-handed coordinates, we only have a right-handed magnetic system.

Fig. 34
figure 34

Jupiter magnetic coordinates. This system rotates with Jupiter but has the Z-axis aligned with the magnetic dipole, M. The X-axis is aligned with the intersection of the magnetic and geographic equators at λ III=290.8 or λ RH=69.2. X=69.2 from Prime Meridian (where λ III=λ RH=0), Y=Z×X, Z = Jupiter dipole axis

Fig. 35
figure 35

This system has the Z-axis aligned with Jupiter’s spin axis but does not spin with the planet. Instead the X-axis is fixed in the plane containing the spin axis and the Jupiter-Sun vector (S). X=Y×Z, Y=S×Z (i.e. in the equator), Z = Jupiter’s spin axis

Fig. 36
figure 36

This system has the X-axis towards the Sun (S) and the Z-axis perpendicular to Jupiter’s orbital vector (V orb). This puts Z normal to Jupiter’s orbital plane. X=S, Y=Z×X, Z=V orb×X

1.3 A.3 Jupiter-Sun-Equator (JSE)

This system is Jupiter-centered, with the Z-axis aligned with the planet’s spin axis but does not spin with the planet (Fig. 35). The X-axis is in the half-plane containing the spin axis and the Jupiter-Sun vector.

1.4 A.4 Jupiter-Sun-Orbit (JSO)

This system aligns the X-axis with the Jupiter-Sun vector. The Y-axis is in the plane containing the Jupiter-Sun vector and the orbital vector of Jupiter (Fig. 36).

1.5 A.5 Jupiter Heliospheric (JH)

Since Juno measures solar wind conditions surrounding Jupiter’s magnetosphere we need a coordinate system that is based on heliospheric properties. This system is Jupiter-centered and the X-axis is the Jupiter-Sun vector, the Y-axis is the solar equator, and the Z-axis completes the system. This is the heliocentric system centered on Jupiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagenal, F., Adriani, A., Allegrini, F. et al. Magnetospheric Science Objectives of the Juno Mission. Space Sci Rev 213, 219–287 (2017). https://doi.org/10.1007/s11214-014-0036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0036-8

Keywords

Navigation